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We introduce a new practical mechanism for remote data storage with access pattern privacy and cor-
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guish between a read and a write. Moreover, the client is provided with strong correctness assurances
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computational privacy and correctness.
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1. INTRODUCTION

As networked storage architectures become prevalent—e.g., networked file systems and on-
line relational databases in sensitive infrastructures such as email and storage portals, li-
braries, health and financial networks—protecting the confidentiality and integrity of stored
data is paramount to ensure safe computing. Such data is often geographically distributed,
stored on potentially vulnerable remote servers or transferred across untrusted networks;
this adds security vulnerabilities compared to direct-access storage.
Moreover, today, the remote servers are increasingly maintained by third party storage

vendors. Most third party storage vendors do not provide strong assurances of data confiden-
tiality and integrity. For example, personal emails and confidential files are being stored on
third party servers such as Gmail [Google 2012], Xdrive [Xdrive 2012], Amazon S3 [Amazon
Web Services LLC 2012], and Ubuntu One [Canonical 2012].
Privacy guarantees of such services are at best declarative and often subject customers

to unreasonable fine-print clauses—e.g., allowing the server operator (and thus malicious
attackers gaining access to its systems) to use customer behavior for commercial profiling,
or governmental surveillance purposes [CBS 2006].
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To protect data stored in such an untrusted server model, security systems should offer
assurances of data confidentiality and access privacy. As a first line of defense, to ensure
confidentiality, all data and associated meta-data can be encrypted at the client side using
non-malleable encryption, before being stored on the server. The data remains encrypted
throughout its lifetime on the server and is decrypted by the client upon retrieval.
Encryption provides important privacy guarantees at low cost. Encryption, however, is

only a first step, as significant information is still leaked through the access pattern of
encrypted data. To consider a simple example, suppose an adversarial storage provider
knows that a portion of the encrypted database corresponds to a sorted keyword index. The
adversary can then correlate plaintext keywords, identified by their position in the index,
to documents(!), by simply observing which locations in the encrypted index are updated
when a new encrypted document is uploaded. This is an example of revealed access patterns
leading to a direct violation of data privacy.
This example barely touches the surface of what can be revealed through access patterns.

The memory locations accessed by an AES implementation, for example, indicate the S-
boxes being used and the encryption key.1 More serious implications arise from the property
that the utility of any external information an adversary might have is multiplied by com-
bining with access pattern information. Moreover, such leaks cannot be efficiently patched
in the same way that other side channels, such as timing attacks, can be prevented. In
general, it is difficult to bound the amount of information leaked by access patterns. Except
in the most abstracted cases, data privacy cannot exist without access pattern privacy.
In existing work, one proposed approach for ensuring client access pattern privacy (and

confidentiality) tackles the case of a single-owner model. Specifically, a service provider
hosts information for a client, yet does not find out which items are accessed or what is
stored. In this setup the client has full control and ownership over the data: other parties
are able to access the same data through this client only. One prominent instance of such
mechanisms is Oblivious RAM (ORAM) [Goldreich and Ostrovsky 1996]. For simplicity, in
the following we will use the term ORAM to refer to any such outsourced data technique.
This paper considers a single-owner storage model. Though the online services cited above
support sharing between users, they all have a single-owner component.
One of the main drawbacks of existing ORAM techniques is their overall time complexity.

Specifically, in real-world setups ORAM [Goldreich and Ostrovsky 1996] yields execution
times of hundreds to thousands of seconds per single data access. Recent work, including
this work, provide various mechanisms to improve the efficiency by orders of magnitude.

This Contribution. In this paper we propose to build on the work in [Williams and Sion
2008] to introduce an efficient ORAM protocol with significantly reduced communication
and computation complexities. Our protocol uses the ORAM-based [Goldreich and Ostro-
vsky 1996] pyramid-shaped database layout and reshuffling schedule employed in [Williams
et al. 2011]. This yielded a protocol with a communication complexity of O(log2 n) in the
presence of O(

√
n logn) client working memory, for a database sized n. Here, however, we

deploy a new construction and more sophisticated reshuffling protocol, to reduce both the
communication complexity (to O((log n)(log2 logn))) and the server storage overheads (to
O(n))—yielding a comparatively fast and practical oblivious data access protocol.
Efficiency. One of the main intuitions here is to store each pyramid level as an en-

crypted hash table and an encrypted Bloom filter (indexing elements in the hash table).
The Bloom filter allows the client to privately and efficiently—without scanning of O(log n)
fake block buckets for each stored block to hide the success of each level query as in previ-

1This is rarely a problem in practice since the memory locations are not typically disclosed at a granularity
useful to any adversary. However, studies of cache access pattern vulnerabilities [Neve and Seifert 2007]
show the gravity of such situations when they are—and what the amount of information that can be leaked
through only subtle information concerning the access pattern.
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ous ORAMs—identify the level where an item of interest is stored, which is then retrieved
from the corresponding hash table. Less server-side storage is required (O(n) instead of
O(n logn)), thus increasing throughput and reducing required server-side storage by an
order of magnitude.
Privacy. The approach guarantees client access pattern privacy, since the same opera-

tions are performed at all pyramid levels, in the same sequence for any item of interest. The
use of the encrypted Bloom filters allows the client to query an item directly at each level
without revealing the success, instead of relying on a series of O(log n) fake blocks for each
stored block to hide the success of each level query. Our contributions consist also of a new
reshuffling algorithm that obliviously builds and maintains the encrypted Bloom filters and
of a more efficient oblivious merge-and-scramble.
Correctness. Moreover, authenticated per-level integrity constructs provide clients with

correctness assurances at little additional cost, specifically ensuring that illicit server be-
havior (e.g., alterations) does not go undetected.
Moreover, our ORAM protocol is well suited for deployment on constrained hardware

such as SCPUs. We propose its deployment on existing secure hardware (such as IBM 4764
[IBM 2006]) to implement Private Information Retrieval (Figure 2), and show that the
achievable throughputs are practical and much higher than existing work. These results
contribute key insights towards making PIR assurances practical.

2. MODEL

Deployment. We consider the following concise yet representative interaction model. Sen-
sitive data is placed by a client on a data server. Later, the client will access the outsourced
data through an online query interface exposed by the server. Network layer confidentiality
is assured by mechanisms such as SSL/IPSec. Without sacrificing generality, we will assume
that the data is composed of equal-sized blocks (e.g., disk blocks, or database rows).
Clients need to read and write these stored data blocks with correctness assurances, while

revealing no information to the (curious and possibly malicious) server. We describe the
protocols from the perspective of the client, who will implement two privacy-enhanced
primitives: read(id), and write(id, newvalue). The (un-trusted) server need not be aware
of the protocol, but rather just provide traditional store/retrieve primitives.
Adversary. The adversarial setting considered through Section 4 assumes a storage
provider that is curious and possibly malicious. Not only does it desire to illicitly gain
information about the stored data, but it could also attempt to cause data alterations while
remaining undetected. We prove that clients will detect any tampering performed by the
server, before the tampering can affect the client’s behavior or cause any data leaks. We do
not consider timing attacks, noting that an implementation can be turned into a timing-
attack free implementation without affecting the running time complexity. We also do not
address direct denial of service behavior.
Cryptography. We require three cryptographic primitives with all the associated semantic
security [Goldreich 2001] properties: (i) a collision-resistant keyed hash function which builds
a distribution from its input indistinguishable from a uniform random distribution, (ii)
an encryption function that generates unique ciphertexts over multiple encryptions of the
same item, such that a polynomially bounded adversary has no non-negligible advantage
at determining whether a pair of encrypted items of the same length represent the same or
unique items, and (iii) a pseudo random number generator whose output is indistinguishable
from a uniform random distribution over the output space.
Notation. n is used throughout to denote the database size in blocks. Communication
complexity is represented in terms of words: that is, for simplicity, we assume that a block
identifier of O(log n) bits can be transmitted at O(1) cost (this creates parity between the
communication complexity and computational complexity representations). We use log to
represent the natural log.
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Fig. 1. Querying ORAM.

When we refer to a “hash function,” we are referring to a cryptographic hash function
as described above in (i). We refer the reader to Goldreich’s book [Goldreich 2001] for an
explanation of how a deterministic encryption function can be used to build a semantically
secure encryption function.
Throughout the paper, we use a security parameter c, with the goal that the adversary’s

advantage at distinguishing access patterns be negligible in this security parameter. We do
not distinguish the security parameter for the cryptographic functions (e.g., key lengths)
from the security parameters for query privacy (e.g., Bloom filter sizes), since they are all
related by constant factors.

3. RELATED WORK

3.1. Oblivious RAM

Oblivious RAM [Goldreich and Ostrovsky 1996] provides access pattern privacy to clients
(such as software processes) accessing a remote database (or RAM), requiring only logarith-
mic storage at the client. The amortized communication and computational complexities
are O(log3n).
In ORAM, the database is a set of n encrypted blocks. Supported operations are read(id),

and write(id, newvalue). The data is organized into log4(n) levels, as a pyramid. Level i
consists of up to 4i blocks; each block is assigned to one of the 4i buckets at this level
as determined by a cryptographic hash function. Due to hash collisions, each bucket may
contain from 0 to O(log n) blocks.
ORAM Reads. To obtain the value of block id, the client must perform a read query in
a manner that maintains two invariants: (i) it never reveals which level the desired block is
at, and (ii) it never looks twice in the same spot for the same block.
To maintain (i), the client always scans a single bucket in every level, starting at the

top (Level 0, 1 bucket) and working down. The hash function informs the client of the
candidate bucket at each level, which the client then scans. Once the client has found the
desired block, the client still proceeds to each lower level, scanning random buckets instead
of those indicated by their hash function. Figure 1 illustrates the ORAM query structure.
For (ii), once all levels have been queried, the client re-encrypts the query result with a

different nonce and places it in the top level. This ensures that when it repeats a search for
this block, it will locate the block immediately (in a different location), and the rest of the
search pattern will be randomized. The top level quickly fills up; how to dump the top level
into the one below is described later.
ORAM Writes. Writes are performed identically to reads in terms of the data traversal
pattern, with the exception that the new value is inserted into the top level (instead of the
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old value). Inserts are simply writes of previously unassigned values. They are performed
identically to writes, since no old value will be discovered in the query phase. Note that
semantic security properties of the re-encryption function ensure the server is unable to dis-
tinguish between reads, writes, and inserts, since the access patterns are indistinguishable.
This means the database size increases on every access (insert, write, or read).
Level Overflow. Once a level is full, it is emptied into the level below. This second level is
then re-encrypted and re-ordered, according to a different hash function (e.g., changing the
“salt” value used with each input). Thus, accesses to this new generation of the second level
will hence-forth be completely independent of any previous accesses. Each level overflows
once the level above it has been emptied 4 times. Any re-ordering must be performed
obliviously: once complete, the adversary must be unable to make any correlation between
old block locations and new locations. A sorting network is used to re-order the blocks.
To enforce invariant (i), note also that all buckets must contain the same number of

blocks. For example, if the bucket scanned at a particular level has no blocks in it, then
the adversary would be able to determine that the desired block was not at that level.
Therefore, each re-order process fills all partially empty buckets to the top with fake blocks.
Recall that since every block is encrypted with a semantically secure encryption function,
the adversary cannot distinguish between fake and real blocks.
ORAM Costs. Each query requires a total online cost of O(log2(n)) for scanning the
logn-sized bucket on each of the logn levels, plus an additional, amortized cost due to
intermittent level overflows. Using a logarithmic amount of client memory, reshuffling levels
in ORAM requires an amortized cost of O(log3(n)) per query.

In [Williams and Sion 2008] we introduced an ORAM-variant with a cost of O(log2 n)
assuming a small amount of client memory. An upper bound on this amount required was
established in [Williams et al. 2011] at O(

√
n logn). In these works, the assumed client

memory is used to speed up the reshuffle process by taking advantage of the predictable
nature of a merge sort on uniform random data. We build on these results here.

3.2. Private Information Retrieval

Another set of existing mechanisms handle access pattern privacy (but not data confidential-
ity) in the presence of multiple mutually non-trusting clients. Private Information Retrieval
(PIR) [Chor et al. 1995] protocols aim to allow (arbitrary, multiple) clients to retrieve infor-
mation from public or private databases, without revealing to the database servers which
records are retrieved.
In initial results, Chor et al. [Chor et al. 1995] proved that in an information theoretic

setting, any single-server solution requires Ω(n) bits of communication. PIR schemes with
only sub-linear communication overheads, such as [Chor et al. 1995], require multiple non-
communicating servers to hold replicated copies of the data. When the information theoretic
guarantee is relaxed single-server solutions with better complexities exist; an excellent sur-
vey of PIR can be found online [Gasarch ; 2004].
Sion et al. showed [Sion and Carbunar 2007] that due to computation costs, use of existing

non-trivial single-server PIR protocols on current hardware is still orders of magnitude more
time-consuming than trivially transferring the entire database. Recent work [Olumofin and
Goldberg 2011] has shown that multi-server schemes (in which servers are trusted not to
collude) as well as more recent lattice-based mechanisms are now 10-1000 times faster than
downloading the entire database. This still leaves PIR orders of magnitude behind ORAM
mechanisms—which are faster at the expense of requiring client-side key management.

3.3. Secure Hardware-aided PIR

The recent advent of tamper-resistant, general-purpose trustworthy hardware such as the
IBM 4764 Secure Co-Processor [IBM 2006] has opened the door to efficiently deploying
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un-trusted server

Host CPU
data

clients

PIR
Secure Co-

Processor

Server Storage

Data

ORAM

interaction

client proxy
(data “owner”)

Fig. 2. (left) Simple ORAM Protocol between a client and a server. (right) A trusted server-side client
proxy can be used to build a PIR interface on top of ORAM assurances.

ORAM privacy primitives for PIR purposes (i.e., for arbitrary public or private data, not
necessarily originated by the current client) by deploying such hardware as a trusted server-
side client proxy.
Asonov was the first to introduce [Asonov 2004] a PIR scheme that uses a secure CPU

to provide (an apparent) O(1) online communication cost between the client and server.
However, this requires the secure CPU on the server side to scan portions of the database
on every request, indicating a computational complexity cost of O(n), where n is the size
of the database.
An ORAM-based PIR mechanism is introduced by Iliev and Smith [Iliev and Smith 2004],

who deploy secure hardware to achieve a cost of O(
√
n logn). This is better than the poly-

logarithmic complexity granted by ORAM for the small database sizes they consider. This
work is notable as one of the first implementations of ORAM-based PIR setups. Figure 2
summarizes the interaction between the client and server in ORAM, and how to turn an
ORAM implementation into a PIR implementation using a Secure CPU.
An ORAM-based PIR mechanism with O(n/k) cost is introduced in [Wang et al. 2006],

where n is the database size and k is the amount of secure storage. The protocol is based
on scrambling of a minimal set of server-hosted items. A partial reshuffle costing O(n) is
performed every time the secure storage fills up, which occurs once every k queries. While
an improvement, this result is not always practical since the total database size n often
remains much larger than the secure hardware size k. For storage of k = c

√
n logn (the

amount of working memory assumed in this paper), this mechanism yields an O(
√

n/ logn)

complexity (significantly greater than our O((log n)(log2 logn)) for practical values of n).
Boneh et al. examine a similar construction in [Dan Boneh and Popa 2011], formalizing the
security model.

3.4. Bloom filters

We include a brief definition of Bloom filters here since we will rely on them in our construc-
tion. Bloom filters [Bloom 1970] offer a compact representation of a set of data items. They
allow for relatively fast set inclusion tests. Bloom filters are one-way, in that, the “contained”
set items cannot be enumerated easily (unless they are drawn from a finite, small space). Suc-
cinctly, a Bloom filter can be viewed as a string of b bits, initially all set to 0. To insert a cer-
tain element x, the filter sets to 1 the bit values at index positions H1(x), H2(x), . . . , Hh(x),
where H1, H2, . . . , Hh are a set of h hash functions. Testing set inclusion for a value y is
done by checking that the bits for all bit positions H1(y), H2(y), . . . , Hh(y) are set.
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By construction, Bloom filters feature a controllable rate of false positives r for set inclu-
sion tests—this rate depends on the input data set size z, the size of the filter b and the num-

ber of cryptographic hash functions h deployed in its construction: r =
(

1− (1− 1/b)
hz
)h

.

Encrypted Bloom Filters. An Encrypted Bloom filter, once we construct it obliviously,
will allow us to quickly and obliviously check any level for the presence of the desired
item. We shall make a set of four modifications to turn a Bloom filter into a remote data
structure that we can query privately. First, we use keyed cryptograhic hash functions in
place of public hash functions. Second, we store their bit representation encrypted while still
allowing client-driven Bloom filter lookups. This is done by dividing the Bloom filter into
constant-sized chunks, encrypting each chunk of bits with a semantically secure encryption
algorithm, and attaching a message authentication code (MAC) for integrity. To prevent an
adversary from returning the wrong chunk, the MAC must protect not just the encrypted
bits, but also (e.g., as “additionally authenticated data”) the location of this chunk (which
includes the position of the chunk within the Bloom filter, and the level and generation
of the Bloom filter itself). Third, we use an oblivious construction process that guarantees
that the construction transcript appears independent of the contents and queries. Fourth,
we sacrifice the constant time query cost in exchange for a guarantee that the possibility of
a false positive is negligible.

3.5. Recent related work

There have been many new approaches to Oblivious RAM introduced in the past several
years. We will review these new approaches, and show that the Bloom-filter-based approach
described in this paper is as important now as ever. In particular, this ORAM construction
finds new use as a fundamental building block in more recent ORAM constructions [Williams
and Sion 2012a; 2012b].
A new approach to speed up ORAM was revealed by Pinkas et al. [Pinkas and Reinman

2010], showing the applicability of the cuckoo hash construction [Pagh and Rodler 2004].
Unfortunately, this was shown [Goodrich and Mitzenmacher 2011] to leak access privacy
information. A similar, but secure, approach, allowing efficient item lookup while hiding
success was developed [Goodrich and Mitzenmacher 2011]. The result is a O(log2 n) solution
requiring logarithmic client storage and requiring only O(n) server storage. This approach
has been re-applied in other work [Goodrich et al. 2011; Kushilevitz et al. 2011].
This research aims at the same goal as we do: obtaining efficiency in a level-based ORAM

by decreasing the server storage and speeding up queries. We eliminate the expensive buckets
on the server, reducing the storage cost (and as a result, the query cost and construction
cost) by a factor of O(log n). The cuckoo hash construction mentioned above also elimi-
nates the excessive server storage, resulting also in faster queries and level construction.
While we use an Oblivious Merge Scramble that runs in O(n log logn) time, and assumes
c
√
n logn client memory, the mechanism of [Goodrich and Mitzenmacher 2011] uses a novel

“Randomized Shell Sort” sorting network that runs in O(n logn) time and assumes only
logarithmic client memory. Finally, unlike [Goodrich and Mitzenmacher 2011], we provide
correctness guarantees against a fully malicious adversary. We do not claim that the cuckoo
hash approach cannot be augmented to provide correctness, but rather that it does not
follow trivially from the construction. In particular, construction of the cuckoo hash table
requires accessing items a non-deterministic number of times, making it unclear how to
detect rollback or data deletion attacks. We suggest that both techniques are relevant for
different scenarios.
Researchers have recently recognized the utility of de-amortized constructions. [Kushile-

vitz et al. 2011], [Goodrich et al. 2011], and [Dan Boneh and Popa 2011], all provide de-
amortized constructions. For simplicity, the construction described here is still amortized,
but techniques similar to those described in [Goodrich et al. 2011] are applicable.
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A promising recursive construction technique is introduced in [Stefanov et al. 2012] under
the assumption of O(n logn) client storage. Using this storage, it promises to reduce the
level construction cost with only O(log n) query cost. The clear drawback here is the as-
sumed O(n log n) client storage—enough to keep track of the positions of all items, instead
of querying recursively for them as in the previously described ORAMs. This amount of
storage makes it safe, e.g., to request an item from each level simultaneously, since the client
already knows where the item is actually stored, resulting in a constant number of online
round trips. The authors present the O(n log n) client storage assumption as not necessarily
unreasonable, since a large block size means that the client only needs a constant fraction
of the outsourced storage. Their alternative construction presented, requiring only O(

√
n)

storage, recursively uses a log2 n-round-trip ORAM to store this position map, at a query

cost of O(log2 n).

4. A SOLUTION

In previous work [Williams and Sion 2008] we achieved a complexity of O(log2 n) in a
protocol offering access privacy but no correctness assurances. Here we build on that result
by deploying a new construction and more sophisticated reshuffling protocol, to significantly
reduce both communication complexity to only O((log n)(log2 logn)) (amortized per-query),
under the same assumption of c

√
n logn temporary client storage, while also endowing the

protocol with correctness assurances.

4.1. Overview

Similar to ORAM (see Section 3.1 for more details), data is organized into log(n) levels,
pyramid-like. Level i consists of up to 4i items, stored on the server as label-value pairs.
These pairs can be stored and retrieved in O(1) time if the storage provider implements a
suitable hash table such as the constant time, constant space hash defined in [Motwani and
Raghavan 1995]. This differs from ORAM, which stores an item at level i using a keyed
hash function to determine its storage bucket (of size O(log n), to allow for hash collisions)
within the level. The use of fixed-sized hash buckets in ORAM instead of a simple hash
table adds a O(log n) storage overhead multiplier, and slows down query processing, but the
buckets are necessary; otherwise queries to a hash table could reveal whether the item was
found at this level.
Here we avoid the overhead of using buckets to mask the query result by using Bloom

filters [Bloom 1970] (constructed to be collision-free). Before attempting to query for an
item that might not be at the current level, a per-level Bloom filter is queried first. The
bits of the Bloom filter are encrypted, hiding the result of the query. If the Bloom filter
indicates that the item is not at this level, we query the level for a unique fake item instead
and continue with the next level. Once we eventually find the desired item (at a future
level)—it will be moved into the top pyramid level—above the levels where it was searched
for before (as in ORAM). This ensures that the same item will never be queried for in that
instantiation of the Bloom filter again (as now it will be found higher in the pyramid, or a
reshuffle would have been triggered).
Insight One: Faster Lookup. Thus one key insight in our mechanism is that we can
construct an encrypted Bloom filter to perform set membership tests, without revealing the
success of our query. Additionally, we design a novel construction procedure that assembles
the encrypted Bloom filter without revealing any correlation between scanned items and
associated Bloom filter positions. The final benefit of using encrypted Bloom filters is that
all unique queries are computationally indistinguishable due to the nature of the keyed
hash function used to index the filter. This allows us to modify ORAM with significant
performance benefits, since we can avoid handling hash collisions, which add a logn factor
in total database size as described above.
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Fig. 3. Sample query. The client first checks the level 1 Bloom filter (1) to see whether the item is at Level
1. Finding at least one bit decrypting (2) to 0, the client knows it is not. The client then asks for a fake
item (3) at Level 1. This fake item was previously placed here for just such a scenario; the server does not
know that it is fake. The client then queries the Level 2 Bloom filter (4). Seeing that all bits decrypt (5) to
1, the client knows the item is stored at Level 2. It requests the item (6); again, the server does not know
whether it is returning a fake or real item. On subsequent levels (7), the client now issues random Bloom
filter queries and requests for fake items (8), to prevent the server from learning that the item was found
at Level 2. Not illustrated in this figure is the next step, which places the discovered item back into the top
level, and possibly initiates a reconstruction.

The notion of encrypting a Bloom filter has been studied previously, e.g. in [Bellovin
and Cheswick 2004]. However, here we use a novel construction that hides the construction
process, the inputs, and the results of the Bloom filter.
Insight Two: Correctness. Moreover, we deploy a set of authenticated, per-level integrity
constructs to provide clients with correctness assurances at minimal additional cost. We
specifically ensure that illicit server behavior (e.g., alterations) does not go undetected.
We now detail these components.

4.2. Query Processing

A query consists of a read or write request for a data item. These items are kept at the
storage provider at a particular level; part of the client’s job is to determine which level the
item is at without revealing this to the server. Algorithm Query shows the pseudo-code of
this operation; it is also illustrated in Figure 3.
To process a query, the client first downloads and scans the server-stored item cache

(line 13) then proceeds to search each level, starting at the top (line 14). A labeling function
consisting of a hash of the item ID with several level parameters (fakeAccessCtr(level) and
Gen(level)) generates the unique label by which the client can find the item at a particular
level, if the item is indeed there. fakeAccessCtr(level) represents the number of accesses
to level since the last reshuffle, and Gen(level) represents the number of times level has
been reshuffled. The use of fakeAccessCtr (line 14) ensures that successive queries request
unique fake items, which the client knows are stored on the server. The use of Gen(level)
ensures that items on every subsequent reshuffle of a level have unique labels. Both functions
are computed from the total number of accesses to the system thus far.
The search of any one level requires O(log logn) time since the number of hash functions

to request h is O(log logn). If at the ith level the item has not already been found (in the
cache or a previous level) (line 17) the client first computes the positions where the item
would be stored in the ith level Bloom filter (line 18). It then retrieves those encrypted bits
from the server-stored Bloom filter (line 20). If the decrypted bits are all 1 (line 22), the
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client has found the item at the ith level. It then computes the label under which the item
is stored in the level (referenced by its hash table) (line 23) and asks the server to remove
and return the corresponding item (line 24). If at least one decrypted Bloom filter bit is
0 (line 26), the client instead performs the same operation using a fake label (built at line
14), known to be stored at the server (line 27).
Once the client has found the item (line 29), it proceeds by seeking fake items on the

subsequent levels. This avoids revealing the level that answered the query, which would
provide a correlation between queries. The client first searches a random set of positions
(line 30) in the Bloom filter at the ith level (line 33), then asks the server to retrieve and
remove a fake item from the level (line 34).
Note that the client queries the remotely-stored encrypted Bloom filter by requesting the

encrypted values of positions indicated by the label function. While this reveals the requested
Bloom filter positions to the remote server, nothing is lost as we prevent correlation by
guaranteeing that any Bloom filter is never queried for any particular item more than once.
Since the values at these positions are each encrypted, the server never learns the result of
the Bloom filter query.

4.3. Access Privacy

The client achieves access pattern privacy by maintaining two conditions. First, no item
is ever queried twice using the same label. This is achieved by removing the item, once it
is found, and placing it in the item cache. Thus, on future queries the client will locate it
in the item cache before repeating a label request; fake requests will be substituted on the
lower levels. As items propagate out of the item cache (described in Section 4.4), the label
functions are updated, so that the item has a different label by the time it makes it back
down to a particular level.
Second, the access patterns must appear indistinguishable from random no matter where

the item is located. A set of fake items is used to guarantee this: if the Bloom filter returns
negative, indicating that the item is not stored at this level, a fake item from this level is
retrieved instead.
On every single query, the server observes the same pattern. The client first scans the

item cache, then queries a random value (chosen uniformly randomly, independently from
all other information available to the server) from the level 1 encrypted Bloom filter—never
queried by the client before. The server can observe the position of bits in the Bloom filter
accessed, but it cannot observe whether each bit is set to 1 or 0. The server then observes
the client retrieve and delete one item from the level 1 hash table—never retrieved by the
client before. This identical pattern of a random Bloom filter lookup followed by a random
label-value retrieval and deletion continues through each level. Finally, the client appends
a (semantically secure) encrypted value to the item cache.
Success or failure at each level is not revealed—the server cannot distinguish queries to

fake entries in the Bloom filter from queries to real items in the filter, and the server cannot
distinguish either of those from real items that are not in the filter. Additionally, the server
cannot distinguish requests to real items from requests to fake items from the hash table,
since the secure hash function used is non-invertible.
In addition to the constant amount of data transfer and computation exercised on each

level by every query, we will see that O(log logn) bits are examined to perform a Bloom
filter lookup. Since there are log4 n levels, the online cost per query is O(log n log logn)
(measured in computation or transfer of words). Level reshuffling, described in the next
section, will bring the total amortized cost per query of O((log n)(log2 logn)).
We now fill in the missing pieces: how to empty the item cache when it becomes full, and

how to build the levels and the Bloom filters without revealing any information the server
can correlate to retrievals.
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1 server: Server /* Server stub */
2 bits: int[ ] /* encrypted bit values of Bloom filter */
3 label, fakeLabel: int[ ] /* search labels */
4 bfpositions: int[ ] /* search labels */
5 fakeAccCtr: int[ ] /* per level access counter */
6 found: boolean
7 K: byte[ ] /* secret key */
8 h: int ← c log logn /* number of Bloom filter hash functions */
9 k: int /* Bloom filter configuration parameter */

10 v: Object /* value for name x */
11 L: Object[ ] ← server.itemcache /* scan of item cache */
12 mi: int /* Size of level i */
13 found, v← L.search(x) /* Check recent queries first */
14 for i← 1 to log4 n do
15 fakeAccCtr[i]++
16 fakeLabel ← hash(i||‘fake’||Gen(i)||fakeAccCtr[i]||K)
17 if found = false then
18 for j ← 1 to h do
19 bfpositions[j] ← hash(i||j||‘BF’||Gen(i)||x||K) mod k · h ·mi

20 end
21 bits ← server.getBloomFilter(i,bfpositions)
22 if decrypt(bits) = “11..1” then
23 label ← hash(i||‘data’||Gen(i)||x||K)
24 v ← server.getAndRemove(label)
25 found ← true
26 else
27 server.getAndRemove(fakeLabel)
28 end

29 else
30 for j ← 1 to h do
31 bfpositions[j] ← random mod k · h ·mi

32 end
33 server.getBloomFilter(i,bfpositions)
34 server.getAndRemove(fakeLabel)
35 end

36 end
37 itemCache.append(x,v)
38 return (v)

Procedure Query(x)

4.4. Handling Level Overflows: Reshuffle

The construction of the initial database structure is explained by the process of emptying
the item cache: items are inserted into the item cache, which then overflows into the lower
levels. Similar to ORAM, when the item cache is emptied, the contents are poured into
level 1. In that process, level 1 and its new contents are reshuffled according to new label
functions, removing any correlations between past and future lookups. When level 1 becomes
full, it is poured into level 2, and so forth. Thus, the reshuffle process empties one level i−1
into the level i below it, which is four times as large as level i− 1. Level i is then scrambled,
hiding the correlation with the items’ previous levels. A new Bloom filter for the lower level
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is constructed—even items which happened to be at level i anytime in the past are now
identified by a new unique label.
Let m be the size of the new level (m ≤ 4i). Let h = O(log logm) be the number of hash

functions used to generate a Bloom filter. The number of bits in the Bloom filter BF at
level i will be equal to a constant k, times the number of hash function h and the number
of items in the Bloom filter m. This ensures that any single bit in the Bloom filter is set
with probability less than 1/k. The database size n grows by one on each query, and thus
varies over the lifetime of this level; h is chosen based on the value of 2n at the time of level
construction, since n will never double during this period.2 The constant k is a configuration
parameter balancing a tradeoff between the number of Bloom filter hash functions and the
Bloom filter size to meet the configured acceptable failure rate (e.g. 2−128).
The client secret key is K. Let W be a working set stored on the server. Let L be a list

of O(m) entries, stored on the server. Let T be a
√
m integer array stored at the client. Let

Bkt be a server-hosted list of O(
√
m) buckets, of

√
m entries each. Initially, W , L, T and

Bkt are empty and all the bits in the server-stored BF are set to 0.
In the next steps (steps 2 through 7 in the detailed description below, and illustrated

in Figure 4) we build the encrypted Bloom filter without revealing the positions set in the
Bloom filter.
A simpler two-step approach (with similar performance) is applicable if an oblivious sort

is used in place of the Oblivious Merge Scramble. The idea is to replace steps 3-6 with an
oblivious sort that puts the indices into the positions corresponding to segments; details
are excluded here. However, any sort requires some extra computation (at least O(m logm)
computation to sort m items instead of scrambling them). Such an oblivious sort can be
obtained by replacing the client random array selection described in section 4.5 with a
comparison that returns the smallest of the items in the fronts of the queue buffers. This
does not affect the communication complexity, but it does slightly raise the mechanism’s
overall amortized computation complexity.
Constructing the Bloom filter in O(m log2 logm) time is accomplished by first scanning

all items in the level, creating a list of what positions must be set in the Bloom filter to
add each item, and storing this list encrypted on the server (step 2). To turn the list into a
proper Bloom filter bit array, it will be sorted with a bucket sort—with

√
m buckets of size√

m, so that any bucket fits in private storage. To keep the buckets indistinguishable, we
ensure they will all have the same size. Next (step 3) we calculate the size of each bucket,
by scanning the list of Bloom filter positions, incrementing the appropriate bucket size tally
for each position. In step 4 we add fake positions that will end up in those buckets that are
lacking, according to the above (step 3) tally. Each bucket corresponds to a fixed range of
positions in the final filter, so j

√
m is used as a position that will wind up in bucket j. At

this point the server will be able to identify the fake positions, since they are all at the end
of the list. We then (step 5) scramble the list of positions to destroy all correlation between
items and positions, and hide the fakes. In step 6 we move the scrambled positions into
their buckets. Step 7 constructs the final Bloom filter, building a piece from each bucket.
Steps 8 and 9 place the items in the new level while eliminating any correlation between
the old and the new level structures.
The overflow process, performed by the client to pour level i− 1 (or the item cache) into

level i proceeds as follows (see Figure 4 for an illustration).

(1) Merge levels. Move all items from level i− 1 and level i into W , a working buffer on
the remote server. Discard the Bloom filters attached to both levels.

(2) Build a list representation of the new Bloom filter.

2Refer to Section 4.8 for discussion of why the database size increases by one on each query.
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Fig. 4. Level reshuffle: Bloom filter construction (Steps 2 - 7)

Increment Gen(i): the generation of level i has increased. Read each item x ∈ W
exactly once, and for each compute its h = O(log logn) positions of bits pj(x) =
hash(i||j||‘BF’||Gen(i)||x.id||K) mod k · h · m, for j = 1..h, in the new Bloom fil-
ter. Encrypt each pj(x) separately and store all E(pj(x)) values on the server-side list
L. This step takes O(m log logn) time, and O(1) private (client-side) storage. Costs
here and in the following steps are expressed in terms of m = 4i, the size of the current
level.

(3) Tally Bloom filter positions to determine future bucket sizes. Read each entry
of L (the list of encrypted Bloom filter positions prepared in the previous step) exactly
once. At the client side, for each entry E(p) ∈ L, let idx(p) be the logm/2 most
significant bits of p. Then, increment T [idx(p)]. This step allows the client to compute
the number of bit-positions of L that will later (Step 6) end up in the Bkt structure.
Effectively, the client builds a tally in local storage calculating the future size of each of
the
√
m buckets that will be built on the server in the step 6 bucket sort. We use

√
m

buckets of size
√
m so that each bucket will fit in private storage in step 7, and the tally

built here, with one counter per bucket, also fits in private storage. The step requires
O(m log logn) time and O(

√
m) private storage. (To avoid redundant scans, this step

can be merged with the previous).
(4) Add fake bits to make the bucket sizes equivalent. The local tally from step

2 indicates the size of the largest bucket. We scan the tally, adding fake encrypted
positions to the server-side list of encrypted positions as we go, so that all the buckets
will have the same size as the largest bucket after the step 5 bucket sort. To add a fake
position that will correspond to bucket j, the position j

√
m is added to the list. (A

simple balls and bins result predicts that the
√
m-sized buckets all have similar sizes,

already; the number of fakes to add is small compared to the number of real items). Let

max be the index of T such that T [max] = max
√
m

j=1T [j]. For each j = 1..
√
m generate

T [max]− T [j] fake values vl such that the logm/2 most significant bits of each vl are
equal to j. Store the encrypted, E(vl||‘fake’) value in L. This operation ensures that
all the buckets of Bkt will store the same number of elements. The bucket size tally is
discarded after this step. This step requires O(m log logm) time.

(5) Obliviously scramble the list of Bloom filter positions. The encrypted indexes
(the bit-positions of L, including the fakes) are scrambled, according to our Oblivious
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Merge Scramble Algorithm, which destroys all correlation between the old positions
and the resulting positions, which are a new uniform random permutation. The new
list L stores the scrambled values. The algorithm requires O(m log2 logm) time and
O(
√
m logm) private storage.

(6) Bucket-sort the list of Bloom filter positions. For each E(p) ∈ L, let idx(p) be
the logm/2 most significant bits of p. Then, do Bkt[idx(p)].add(E(p)). Here the Bloom
filter’s scrambled, encrypted positions are bucket-sorted. The client retrieves each bit
index, decrypts it to read it, and writes the encrypted value back to the bucket on the
server corresponding to the logm

2
most significant bits of the position. The bucket sort

allows us to construct the encrypted Bloom filter in the next step without revealing to
the server which bits are set: if we were to simply scan the entire list of positions setting
the corresponding bits to true, the server would observe the bit flips in our encrypted
array and learn what positions are set. The bucket sort groups related positions together
so that we can build the Bloom filter from left to right in a single pass. This step requires
O(m) time.

(7) Construct Bloom filter. For each j = 1..Bkt.size, download Bkt[j]. Note that the
size of Bkt[j] is

√
m. Let BF [j

√
m] . . . BF [(j + 1)

√
m] be the segment of the Bloom

filter corresponding to Bkt[j], where BF [idx] denotes the idxth bit of BF . For each
E(p) ∈ Bkt[j], let x be the least significant logm/2 bits of p. Do BF [j

√
m + x] = 1.

Store E(BF [j
√
m]) . . . E(BF [(j + 1)

√
m]) on the server. Finally, store the oblivious

Bloom filter of the working set W on the server.
Here the client downloads each bucket (which conveniently fits into local storage). The
bucket corresponds to a

√
m-sized segment of the final Bloom filter—all positions in

this bucket refer to a bit in this segment of the filter. The bits corresponding to listed
positions are set to true, with all other bits set to false, in the local copy. The client
encrypts this Bloom filter segment and uploads it to the server. Observe that the server
has no indication of how many bits are true in this segment (other than that it is limited
by the bucket size), nor which are true. The Bloom filter is finished at the end of this
step. This step requires O(m) time, and O(

√
m) private storage.

(8) Scramble the items. Finally, the client uses the Oblivious Merge Scramble Algorithm
to scramble the actual items in the working buffer W . The Oblivious Merge Scramble
requires O(m log logm) time and O(

√
m logm) private storage.

(9) Add items back to level i. Once scrambled, the items inserted under their new
labels, according to the new labeling function for level i. For each item in x ∈ W let
label(x) = hash(i||‘data’||Gen(Li)||x.id||K). Insert the pair (x, label(x)) into the set of
items stored at level i. Add m fake items to level i, so that a query that turns out not
to be for this level will have an item to retrieve instead (most of these m fakes will be
deleted by the query process before the next reshuffle).

Level i− 1 is now empty, and level i now contains all the items that were in level i− 1. If
level i is now full, this is then repeated as level i is then dumped into level i+1; the process
is repeated recursively.
This procedure shows how level i − 1 can be dumped into level i at a cost of

O(m log2 logm) = O(4i log2 i). Level i−1 is emptied once every 4i−1 queries, thus resulting
in an amortized cost per query due to reshuffling of

log4 n
∑

i=0

O(
4i log2 i

4i−1
) =

log4 n
∑

i=0

O(log2 i) = O((log n)(log2 logn))

As described below, client memory sized c
√
m logm is required for this procedure. The

most stringent requirement is for the construction of the bottom level, when m = n. This
case requires c

√
n logn memory.
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The positions of the Bloom filter bits retrieved to check an item will appear to be chosen
uniformly random, and completely independently of each other; therefore, any bit pattern
indicates nothing about the query or the success of the query. They are independent of the
bucket sort write pattern, which is the only other piece that could be tied to it, since the
bucket sort write pattern is the only access pattern that varies during the reshuffle. The
bucket writes are all identical except for the order of the writes, which is uniform random
because of the scramble. The scramble has no bearing on the Bloom filter access pattern,
which is dependent only on the query and the current Bloom hash function. Therefore the
Bloom filter construction process yields no information about the items to the server in the
resulting Bloom filter.
The level reorder process results in a new level that has no correlation to the old level,

since the new permutation is chosen uniformly randomly (Theorem 4). The scramble process
itself reveals no information about the new or old permutations, since the scramble has the
same access pattern in all instantiations.

4.5. Oblivious Scramble Algorithm

To complete step 5 above, we now describe an algorithm that performs an oblivious scram-
ble on a array of size m, with c

√
m logm local storage, in O(m log logm) time with high

probability. This is based on an algorithm by defined in [Williams and Sion 2008], which
scrambles an array obliviously in time O(m logm) by ways of a merge sort. Since our ap-
plication only requires a scramble, and not a complete sort, we can improve the asymptotic
complexity by merging multiple arrays at once.
Informally, the algorithm is still a merge sort, except a random number generator is

used in place of a comparison, and multiple arrays are merged simultaneously. The array is
recursively divided into subarrays, which are then scrambled together in batches. The time
complexity of the algorithm is better than merge sort since multiple subarrays are merged
together simultaneously. Randomly selecting from the remaining arrays avoids comparisons
among the leading items in each array, so it is not a comparison sort.
The Oblivious Scramble Algorithm proceeds recursively as follows, starting with the re-

mote array split into subarrays of size s = 1, a security parameter c, and an array to
scramble of size m.

(1) For subarrays sized s, allocate ⌈
√

m/s⌉ buffers of size c
√
s logm (requiring c

√
m logm

space total)

(2) Split the array into batches of
√

m/s subarrays.

(3) For each of the m/s√
m/s

=
√

m/s batches:

—Obliviously merge the subarrays in this batch together into one new subarray of size
(s)

√

m/s =
√
ms, by performing the Oblivious Merge Step on the allocated buffers.

The Oblivious Merge Step requires c
√
s logm local working memory for each of the

√

m/s buffers, for a total of c
√
m logm working memory, and operates in O(

√
ms)

time.
(4) In the end there are

√

m/s subarrays of size
√
ms. Recurse with this larger subarray

size.

One recursion of this algorithm requires a single pass across the level, costing O(4i) for

level i. Each pass brings the total number of subarrays from m/s to
√

m/s, and we repeat
until there is one subarray left. After iteration p, the number of subarrays remaining will
be m1/2p . There will be 2 subarrays left when p = log2 log2 m. Since it takes log2 log2 m
passes to go from m to 2 subarrays, and each pass involves a single read and write of the
entire array, the total running time / communication complexity for running the oblivious
scramble on an array sized m is O(m log logm).
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We now describe the last remaining piece of the Oblivious Merge Scramble Algorithm,
the Merge Step.

4.6. Oblivious Merge Step

The Oblivious Merge Step, whose pseudo-code is included here, takes r arrays of size s,
and merges them randomly into a single array of size rs, preserving the ordering among the
input arrays in the output arrays: if an item a is before item b in original array i, it will
also be before b in the final array.
The permutation is chosen uniformly randomly out of all permutations that preserve the

ordering of the original input items. To ensure this, we will take rs steps, choosing an item
from the front of one of the r arrays at every step. The choice is biased since we choose each
item without replacement randomly from the remaining items. If a particular array has a
items left at step j, it has a a

rs−j chance of being chosen at this step. In the pseudo-code

we use the procedure RandomlyChooseASubarray for this purpose.
Implementation of such a random function is not quite trivial, so we also include its

description. Given a set of partially filled arrays the RandomlyChooseASubarray procedure
chooses, in O(1) expected time, using

√
sr ≤ √n local storage, one of the arrays such that

the probability of being chosen is proportional to the number of items in the array.

1 B ← New remote destination buffer size rs

2 t ← size of local queues, 2c
√
s logm

3 for i = 1 to r do
4 qi ← empty queue stored locally, size t
5 for x = 1 to t/2 do
6 enqueue(qi, decrypt(readNextItemFrom(Ai)))
7 end

8 end
/* At this point, each queue will have t/2 items */

9 for x = t/2 to rs + t/2 do
10 if x ≤ rs then
11 for i = 1 to r do
12 enqueue(qi, decrypt(readNextItemFrom(Ai)));
13 end

14 end
/* Now we’ve read r items; time to output r items */

15 for i = 1 to r do
16 v ← RandomlyChooseASubarray
17 x ← dequeue(qv)
18 writeNextItemTo(B, encryptWithNewNonce(x))
19 end

20 end
21 return B

Procedure ObliviousMergeStep(A1, . . . Ar)

RandomlyChooseASubarray Algorithm. This algorithm returns a random permutation of a
sequence of length sr consisting of r values each repeated s times. All permutations are
chosen with equal likelihood.
For first sr/2 selections, a random number is simply chosen from 1 . . . n. The number space

is divided into r equal sized segments; the number will fall within the range corresponding
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to array i. If it falls within the first part of array i, corresponding to one of the remaining
items in this array, decrement this index for array i, and return i. Else, repick. This allows us
to pick items without replacement, in expected O(1) time, with only O(r) working storage
(to record the remaining items left in each array).
This will succeed in an average of 2 tries for the first sr/2 choices. After this, the target

range must be decreased so that the average number of tries required does not increase.
We simply change to pick random numbers from 1 . . . sr/2, again divided into r equal sized
segments. This reduction can be repeated since the arrays are picked from with roughly
equal frequency; the discrepancy between any two arrays will never pass c

√
s as shown

in the following theorem. Once the arrays are down near size c
√
s, they can no longer be

divided into equal-sized arrays that are dense enough to successfully pick in a small number
of tries. However, at this point they are now small enough to fit in local memory, so a
Fisher-Yates scramble can be performed on the remaining items.

Analysis of the Oblivious Merge Scramble. The key to obliviousness is that we accomplish this
random selection without affecting the actual access pattern of reading from the server. In
[Williams and Sion 2008] this is implemented for 2 arrays; we now extend this to merge
r arrays. By simply reading the input evenly at a fixed rate, and outputting the items
indicated by the random function, the uniform nature of the random function will cause
the output rates to be very similar with high probability.
In other words, we maintain a series of caching queues that are fed at a certain rate.

According to a random function, we remove items from the queues. By the nature of the
random selection, with high probability the queues will never overflow from being dequeued
too slowly, nor empty out from being dequeued too quickly, as shown in Theorem 7.
Now, to show that the Oblivious Merge Scramble produces output indistinguishable from

a uniformly randomly chosen permutation (from here on referred to as a “random permuta-
tion”), we start with a set of theorems proving that a single Oblivious Merge Step outputs
a random permutation of the contents of its input queues. We break this into three steps.
First we show that choosing a random permutation is equivalent to selecting according to
a random interleaving of the input queues (Theorem 1). Second, we show that given ran-
dom coin flips, the RandomlyChooseASubarray algorithm produces such a random ordering
of the input queues (Theorem 2). Theorem 3 shows the combination of these procedures
produces a random permutation of the elements of the input arrays.
Theorem 4 shows that these constructions can be combined to produce a uniform random

permutation of a single array. Finally, we show that the ability to distinguish the output
permutation from a random permutation reduces to the ability to distinguish these coin
flips from random (Theorem 5).

Theorem 1. Selection from a set of randomly permuted input queues, according to
a random interleaving of the input queues, produces a random permutation of all the el-
ements of the input queues. In particular, given input queues I1 . . . Ir of unique elements
whose contents have been randomly permuted, removal from the queues according to a ran-
dom permutation of the sequence 1|I1|2|I2| . . . r|Ir |, (the “interleaving”), produces a random
permutation of all the elements of I1 . . . Ir.

Proof. Since each output element belongs to a single unpermuted input queue, each
output permutation is generated by a unique set of input queue permutations and inter-
leaving. We identify the reverse mapping from output to input thusly: each input queue
permutation is obtained by taking the ordering in the output array of the elements belong-
ing to the given input array. The interleaving is obtained by taking the input queue identifier
of each element in the output array. It follows from this one-to-one mapping of all output
permutations back to the unique input that generates it, that all output permutations are
possible.
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Moreover, all possible input array permutations are independent and equally likely (by
assumption). All possible interleavings are also equally likely (also by assumption).
Because there is a one-to-one mapping from inputs to the outputs, all outputs are possible,

and all combinations of input permutations and interleavings are equally likely, it follows
that all output permutations are equally likely.

We now show that we can build a random interleaving of the r subarrays by repeatedly
removing and outputting the head of one of the r subarrays selected randomly, with proba-
bility weighted according to the number of elements left in each subarray. More specifically,
we show that the order of subarray selection, denoting subarray i by the integer i, is a
random permutation of the sequence 1s2s . . . rs, with all permutations equally likely.

Theorem 2. Choosing elements of a sequence S of rs integers 1 through s, with element
Si (for i from 0 through rs− 1) chosen according to the probability density function p(Si =

x) = (r −∑i−1

j=0(Sj = x?1 : 0))/(rs − i), results in a random permutation of the sequence
1s2s . . . rs.

Proof. We show that all sequences are equally likely to be chosen this way. First, we
show that swapping any two consecutive elements in any given sequence S results in an
equally likely sequence.
Take consecutive positions i and i + 1 in a sequence S, with elements from Si = k and

Si+1 = l, where k 6= l. The chance P (S) of generating S using the incremental construction
is p0,i−1P (Si = k|S0..Si−1)P (Si+1 = l|S0..Si))pi+2,rs−1, where p0,i−1 is the probability of
choosing the portion of the sequence leading up to position i, according to the incremental
definition. P (Si = k|S0..Si−1) is the chance that a sequence starting as such will be followed

by k, and is obtained from the definition, (r −
∑i−1

j=0(Sj = k?1 : 0))/(rs − i). Letting Nk

be the number of times the element k appears in the subsequence S0..Si−1, this simplifies
to (r−Nk)/(rs− i). Likewise, P (Si+1 = l|S0..Si) is seen to be (r−Nl)/(rs− i), letting Nl

similarly be the number of times the element l appears in the subsequence S0..Si−1. Note
that Nl is also the number of times l appears in S0..Si, since Si 6= l. We define pi+2,rs−1 as
the product of the probabilities of each choice in the rest of the sequence, Si+2..Srs−1. This
allows us to express the likelihood of S as P (S) = p0,i−1

r−Nk

rs−i
r−Nl

rs−i pi+2,rs−1.

Consider now the sequence S′ obtained by swapping positions i and i+1. Since S′
0..S

′
i−1 =

S0..Si−1, the probability of obtaining S′
0..S

′
i−1 is still p0,i−1. The probability that prefix

subsequence is to be followed by l is now P (S′
i = l|S′

0..S
′
i−1) = P (S′

i = l|S0..Si−1) =

(r−Nl)(rs−i). The probability of choosing S′
i+1 = k is P (S′

i+1 = l|S′
0..S

′
i) = (r−∑i

j=0(S
′
j =

l?1 : 0))/(rs − i) = (r −Nk)(rs − i). Finally, we see that the choice of the elements at the
end of the sequence, S′

i+2..S
′
rs−1 is unaffected by the order of elements at S′

i and S′
i+1. This

is because the choice of each element depends only on the number of times each element
precedes it, not the order of those elements. Thus, P (S′) = p0,i−1

r−Nl

rs−i
r−Nk

rs−i pi+2,rs−1 =

P (S).
Finally, observe that any permutation can be obtained by repeatedly swapping consecu-

tive elements. Since we are equally likely to generate any two sequences that have a single
pair of swapped consecutive elements, this implies an equal likelihood of generating any
permutation.

Theorem 3. Running the Oblivious Merge Step on unbiased random coin flips and
randomly permuted input arrays generates a random permutation.

Proof. This follows from Theorems 1 and 2, and the definitions of the Oblivious
Merge Step and RandomlyChooseASubarray algorithms: the Oblivious Merge Step se-
lects a random permutation of input queues, according to an interleaving provided by
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RandomlyChooseASubarray. Theorem 2 shows this interleaving to be random, and The-
orem 1 shows this output to be a random permutation.

Theorem 4. Given unbiased random coin flips, the Oblivious Merge Scramble produces
a permutation selected with equal probability from all possible permutations of inputs.

Proof. The scramble consists of a series of array merge-scrambles, starting with arrays
of size 1 on the first merge and resulting in an array of size n after the last merge.
We use an inductive argument on the merge step j.
As a base case, the inputs to the first merge step (j = 1) are arrays of size 1. These arrays

are already in the only possible permutation, so by definition, this is a permutation selected
uniformly randomly from all possible permutations.
Assume as the inductive hypothesis that the input to step j is a set of random permuta-

tions of the input arrays.
The Oblivious Merge Scramble produces as the output of step j (the input to step j+1)

the set (referred to as a “batch of subarrays” in the Oblivious Merge Scramble definition)
of outputs of Oblivious Merge Step, which is run multiple times across a partition of the
output arrays from step j. By Theorem 3, each Oblivious Merge Step instance outputs a
permutation of the elements of those input arrays selected uniformly randomly. Thus the
input to step j + 1 is a set of randomly permuted arrays.
By induction, the output of any merge step past j = 1 is a set of randomly permuted

arrays. In particular, the output the final merge step (j = log logn), which is a set containing
a single element, consists of a randomly permuted array.

Now we show that replacement of the source of randomness can be safely replaced with
a PRNG source indistinguishable from random. That is, we will show that an adversary
with an advantage ǫ at distinguishing the output array from a random permutation of the
contents of the input arrays also has an advantage ǫ at distinguishing the PRNG output
from random.

Theorem 5. (Replacement of the random source with a source indistinguishable from
random.) The advantage of an adversary at distinguishing the output of Oblivious Merge
Scramble from a uniformly randomly chosen permutation of the elements in the Merge
Scramble input is equal to the advantage of the adversary at distinguishing the coin flips
used in Merge Scramble from random.

Proof. An adversary B, given a source of coin flips, can distinguish it from uniform
random as such: simulate the Merge step procedure using the set of coin flips; run A on the
output. The advantage of adversary B at distinguishing the set of coin flips from uniform
random is equal to the advantage of A at distinguishing the merge step output from random.
Take an algorithm A with advantage ǫ at distinguishing the Oblivious Scramble output

from a true random permutation. This allows construction of an algorithm B that distin-
guishes the output of the employed PRNG from random, as follows. Algorithm B is given
a sequence of bits S, with the goal of outputting 0 if it believes they are random, and 1 if
it believes they are from the PRNG. Algorithm B takes the input and runs the Oblivious
Merge using the bit sequence S, to produce a permuted array P . It then returns A(P ).
By definition, the probability that A(P ) = 1 for a randomly permuted array P is at

least ǫ less than the probability that A(P ) = 1 for an array constructed by the Oblivious
Merge Step using bits from our PRNG. Since running the Oblivious Merge Step on random
coin flips generates a random permutation, as shown in Theorem 3, the probability that
A(P ) = 1 when S is a random set of bits is at least ǫ greater than when S is chosen by our
PRNG.
The advantage of the algorithm at distinguishing the permutation from random thus

reduces to its advantage at distinguishing our PRNG output from random.
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We now show correctness of the probabilistic Oblivious Merge Step. As described above,
the Merge Step starts with a warm up phase (input but no output) in which each of r
local queues are half-filled with elements from the corresponding input array. Next, there
is a series of iterations, which each read 1 element from each of the r arrays, and output
r elements, chosen randomly from the input arrays, according to the random permutation.
Finally, in a “cool down” phase (output but no input), the remaining elements are emptied
out of the queues, again according to the permutation. The warm up and cool down phases
have no chance of overflowing or prematurely emptying the queues; we just need to show
that the queues stay within their bounds in the main phase.
We start with a Theorem about random walks, proved in [Williams et al. 2011], which

will be used to model our queue sizes vs. time.

Theorem 6. Let p < 1/2. Let W be a random variable distributed uniformly on the
set of all walks W of length z, starting at 0, and containing zp +1-steps and z(1 − p)
steps of −p/(1 − p). For such a walk w, let f(w) = 1 if and only if w exceeds c

√
pz log z.

Let FW := f(W ). Then for each z > 1, PFW
(1) ≤ 4ze−

c2 log z(1−p)2

16 which is negligible for

c ≥ 4
√

log(4)/
√
log z.

Theorem 7. The Oblivious Merge Step succeeds, with high probability: for any s such
that 1 ≤ s ≤ m/2, the chance that the queue buffers sized c

√
s logm overflow or underrun

is negligible w.r.t. the security parameter c.

Proof. Each instance of the Oblivious Merge Step reads from the set of r =
√

m/s input
arrays sized for some 1 ≤ s ≤ m/2 in a random order. This order is chosen according to a
random permutation of 1s2s . . . rs, as shown in Theorem 2. The walk is length rs =

√
ms.

The size versus time of any array in the merge step is a walk chosen according to a random
permutation of s (+1)-steps and s(r − 1) steps sized (−(1− r)/r).
Setting p = 1/r = 1/

√
ms and z = rs =

√
ms, Theorem 6 shows that the chance of such

a walk exceeding a bound of ±c
√

s log
√
ms is negligible in c. Since s < m, c

√

s log
√
ms <

c
√
s logm, and the buffers sized c

√
s logm suffice.

Theorem 8. Any advantage of the adversary (server) at deciding any function
of the permutation output by Oblivious Merge Scramble on input of a publicly known
size, gained by learning the sequence of reads and write tuples of the form (“read” or
“write”,location,value), translates into a violation of the semantic security of the encryption.

Proof. The sequence of locations read and written by the oblivious scramble defined in
Algorithm ObliviousMergeStep is deterministic for a given input array size and independent
of the permutation being performed. The encrypted blocks are all equivalently sized, and
value is always a fresh output of a semantically secure encryption algorithm.
Any knowledge gained about the permutation from the encrypted values directly im-

plies the server’s ability to distinguish between or correlate different instances of encrypted
equally sized data values. This violates the semantic security of the encryption algorithm.

4.7. Bloom Filter and Query Privacy

Recent analysis of our construction in [Pinkas and Reinman 2010] reminds us that any
Bloom filter false positives result in an access pattern leak. Further, it was suggested in
[Kushilevitz et al. 2011] that eliminating the possibility of false positives could result in
a performance penalty. To address these observations, we show here that the construction
avoids false positives with high probability.
A Bloom filter containing z items has two parameters: y, the number of hash functions

used (the number of bits set per item in the filter), and x, the number of bits in the Bloom

filter, yielding the false positive rate r =
(

1−
(

1− 1
x

)yz)y
.
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The number of items z is determined by the level size, at 4i for level i. The number of
hashes used y is set to the security parameter c. Finally, we set the size of the Bloom filter
x to scale proportionally with z and the number of hashes y, at 4ick for a constant k. We
show now that the probability of a false positive r for a single Bloom filter lookup with
these parameters is negligible in the security parameter.
Observe, as [Pinkas and Reinman 2010] points out, that we are not restricting the number

of Bloom filter hashes to minimize the false positive rate. This allows flexibility in finding
the performance optimal tradeoff between Bloom filter size (determining construction cost)
and the number of hash functions (determining lookup cost).

Lemma 4.1. A Bloom filter containing z = 4i items, using y = c hashes, and with
x = 4ick bits has a false positive rate negligible in the security parameter c for k > 1.

Proof. The portion of bits in the Bloom filter that are set is upper bounded by zy
x ,

yielding the looser bound r ≤
(

zy
x

)y
.

r =

(

1−
(

1− 1

x

)yz)y

≤
(zy

x

)y

=

(

4ic

4ick

)c

= k−c

This quantity is negligible in c.

With x ≥ cz, the cost to obliviously construct a Bloom filter sized x is shown earlier
to be O(x log log x) (with sufficient storage); since x is proportional to z, the asymptotic
performance is not affected by the Bloom filter. Moreover, the time required to query this
Bloom filter is O(c), which is constant for any chosen security parameter c.
However, we require log4 n lookups (in different Bloom filters) to perform an access.

k−c log4 n is not strictly negligible for a variable n. Thus, we instead require the failure
probability per Bloom filter lookup to be within k−c/ log4 n, so that the union bound gives
us a total probability of failure per access of k−c.
To achieve this we revise the Bloom filter parameters. The number of items z is still

determined by the level size, at 4i for level i. The number of hashes used y is now set to
c+logk log4 n. The size of the Bloom filter x should still scale proportionally with z and the
number of hashes y, at x = kyz = 4ik(c+ logk log4 n) for a constant k. The probability of
a Bloom filter false positive with these parameters is negligible in the security parameter,
now over a period of log4 n lookups.
Since the value of n increases by one each query, n is not constant over the lifetime of a

level instance. However, once n > 2, the database size will never again double during this
period. Thus, choosing a number of hash functions h based on a value of c+ logk log4 2n <
c+1+ logk log4 n suffices to limit the probability of a false positive over the entire duration
of a level, even as n is increasing.

Theorem 9. A set of log4 n queries over a Bloom filter containing z = 4i items, using
y = c + logk logn hashes, and with x = 4ik(c + logk log4 n) bits has a false positive rate
negligible in the security parameter c for k > 1 over a period of log4 n lookups.

Proof.

r ≤
(zy

x

)y

=

(

4i(c+ logk log4 n)

4ik(c+ logk log4 n)

)c+logk log4 n

= k−c−logk log4 n =
k−c

log4 n

Taking the union bound over log4 n Bloom filter lookups, the probability of failure is
bounded by r log4 n ≤ k−c. This quantity is negligible in c.

The time to query this Bloom filter is O(c + log logn). The time/communication
required to construct this Bloom filter obliviously is O(x log log x) = O(4ik(c +
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logk logn) log log(4
ik(c+logk logn))). Assuming a constant k, and amortizing over the shuf-

fle period of 4i queries, this simplifies to a shuffle cost per query ofO((c+log logn)(log logn+
log log((c + log logn)))). For a constant security parameter c, and since log log log logn <

log logn for n > 1, this shuffle cost is O(log2 logn) (per level). The construction cost across
all levels is O((log n)(log2 logn)). In summary, guaranteeing a failure rate negligible in the
security parameter c across all logn lookups for a given query raises the amortized shuf-
fle cost per query from O(log n log logn) to O(log n log2 logn). Further, it raises the online
lookup cost from O(log n) to O(log n log logn).

Theorem 10. The server learns nothing about the client access pattern by observing
queries.

Proof. Theorem 4 shows that all items at a particular level are scrambled uniformly
randomly. The Bloom filter construction algorithm also scrambles the positions uniformly
randomly, so that no correlation can be maintained before and after the scramble. Semantic
security of the encryption function ensures that the encoding of an item reveals nothing
about its position after the scramble.
The use of keyed cryptographic hash functions guarantees that unique queries will appear

uniform random; the server gains no additional information by watching the queries. The
reshuffle schedule ensures that the same lookup is never run against a particular Bloom
filter or level instance twice between scrambles; after an item is queried it is placed in
the top level, where it will be detected the next time it is queried. As the levels overflow,
reshuffling ensures that the item will have a new label when it reaches a level at which it
had previously been located. Since the scrambles destroy all correlation, all queries therefore
appear independent and uniform random to an observer.
The overall access pattern appears constant and predictable to the server; reshuffles hap-

pen at fixed, predetermined positions, and the only difference is in the uniformly random
selection without replacement of the items queried at each level.

4.8. Increasing Database Size

The database size increases by one on each query. This is because when a queried item
is moved to the top, a fake item is effectively left in its place in the lower level. This is
necessary to avoid revealing which level the item is being moved from. This property has
the benefit that reads are indistinguishable from inserts.
Another way of reasoning about why the database grows on every query is to see that

the level reshuffle process inserts a fake item to retrieve at each level for every query (over
the projected lifetime of the level). The Query procedure removes one item from each level.
These are the pre-established fake items, except at the level where the item itself is taken.
So these inserted fakes will all be deleted—except for those that happen to be located at
the level its corresponding query is answered at.
If this behavior is undesirable, it is simple to consolidate the database periodically without

affecting the amortized complexity. For example, one option is to periodically read the entire
database into a temporary server-stored array, Obliviously scramble the array, then add each
item back to a fresh database. If this process is run every time the database size doubles,
then the cost of eliminating built-up fake items is still less than the amortized query cost,
while the total number of built-up fake items remains less than the number of real items.
Any such process ends up revealing, of course, the number of fake items removed.

5. CORRECTNESS AND INTEGRITY

In this section we introduce a set of integrity constructs that endow the above solution with
correctness assurances. Specifically, we would like to guarantee that any storage provider
tampering behavior is detected. All of these constructs can be implemented efficiently, with
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few or almost no overheads: (i) Message Authentication Codes (MACs) are added for all the
stored items and Bloom filters; (ii) unique version labels for each item in the data covered by
the MAC are added to prevent any replay-type attack in which the server incorrectly replies
with a previously MAC-signed message; (iii) incremental, collision-resistant commutative
checksums are added to checksum the item sets contained in each level, to prevent the server
from hiding or duplicating items during the level reshuffle process.
For (i) we require a MAC function, such that the computationally bounded adversary

has no non-negligible ability to construct any message, MAC pair (M,MAC(M)) for an
M that did not originate at the client. Every item uploaded to the server is protected by
such a MAC. (ii) is straightforward since level construction already labels items uniquely,
and the non-repeating generation of each level is known by the client. For (iii), besides the
requirement of being collision-resistant, it should be easy for clients to maintain and update
a checksum of a set. In particular, when adding or deleting items, it should be possible to
to so incrementally, without recomputing the entire checksum value.
The incremental hashing paradigm of Bellare and Micciancio [Bellare and Micciancio

1997] can be used to construct exactly such a checksum. Fix any cryptographic hash function
h (viewed as random oracle) and a large prime p. To hash a set B = {b1, . . . , bl}, we compute
the product

H(B) :=
l

∏

i=1

h(bi) mod p. (1)

Note that this hash construction allows both for easy addition of item b (multiplication with
h(b)) and removal of any bi (multiplication by (h(di))

−1) without needing to recompute the
hashes of all values b1, . . . , bl.
It can be shown in the random oracle model [Goldreich 2001] that it is computationally

infeasible to find two sets that have the same checksum; the hash function (1) thus forms
an easy and efficient way to authenticate the set of items in a level:

Theorem 11. If the discrete logarithm problem in Z
∗
p is hard it is computationally in-

feasible to find two sets A 6= B with H(A) = H(B).

Theorem 12. A client interface correctly implementing the above integrity constructs
will detect all incorrect server responses before they reveal any part of the access pattern, or
return an incorrect answer to the user of the interface.

Proof. The proof is straightforward by construction. We enumerate all ways in which
the server can violate correctness.
If the server does not respond to a query at all, the client will detect the denial of service,

with the caveat that over any asynchronous communication line it may be impossible to
determine who is responsible the denial of service, or whether the response may eventually
arrive.
Construct (i) guarantees that if the server replies with to a query with data that is not

accompanying a valid MAC for that data, the client will immediately detect the invalid
MAC and return ⊥, thus limiting the damage done to denial-of-service.
Thus, it now suffices to consider only those attacks in which the server responds with data

authenticated by a valid MAC. If the MAC function is secure, this reduces to considering
only attacks in which the server responds with out-of-date data that was originally sent
from the client (e.g., a replay attack).
Since every correct server response in this protocol consists of one item initially uploaded

by the client, the only type of tampering attack that remains is one in which the server
returns the wrong item or version of items in any response.
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Construct (ii) attaches a unique version ID to every subsequent version of an item. More-
over, at every step the client knows the exact unique version ID of the desired item a priori.
The version id label is simply a combination of the desired item’s label/id, the level id, and
the reshuffle count of the level. Thus, any attack in which the server returns the wrong item
or version of an item, the returned version ID (which is MAC-protected), will mismatch the
expected version ID.
Finally, due to its incremental, collision-resistant nature, construct (iii) allows clients to

properly authenticate the accumulated per-level writes/reads of items during the reshuffle
phase. Specifically, at all points during the online query phase, the client maintains the
incremental commutative checksum for a level—when a client removes/adds an item it also
updates the checksum accordingly. Then, during the reshuffle phase, the level is scanned
and copied at once. The client can now verify the previous operations by re-computing the
checksum for the level and comparing it with the locally maintained one.

6. PERFORMANCE ANALYSIS

We now discuss main performance projections based on the network traffic, computa-
tion, and disk accesses. considering the following configuration: disk throughput = 80
MBytes/sec; disk sector size = 4096 bytes; disks are rotational-latency-free solid state disks
(SSDs); client symmetric encryption crypto throughput = 100 MBytes/sec (from bench-
marks provided by [Lipmaa 2006]); network throughput = 1 GBit/sec; network latency =
5ms. We set the number of Bloom filter hash functions to 50, and determine from that the
corresponding Bloom filter size required to establish a false positive rate of 2−128. The con-
struction cost amortized per query, plus the online cost per-query cost, is graphed against
a growing database size in Figure 5.
This plot assumes an optimal implementation in which resource costs of level construction

can be paid in parallel: the server disk writes simultaneously with the client encrypting
data and sending it on the network. That is, instead of paying these costs sequentially, we
assume that the there is a bottleneck formed by the most limiting resource (in this case, the
server disk throughput). Aside from start-up costs, this is roughly accurate for an optimized
implementation. Reads during level construction, for example, are all deterministic; the
server can read ahead to keep the disk busy even while the client is processing other data.
We plot three costs and their sum. The online query cost reflects the cost of performing

log4 n Bloom filter lookups on the server and reading the resulting items. This includes
reading of 50 log4 n disk sectors: one for each Bloom filter position indicated by the secure
Bloom filter lookup hash function at each level. It also models the disk read, network
transfer, and decryption of the log4 n items themselves.
The Bloom filter construction cost models the simplified Bloom filter construction pro-

cedure, in which a merge Sort is used in place of the merge Scramble. The merge scramble
has an equivalent I/O cost but requires slightly more client computation (negligible in this
scenario). The plot models the bottleneck resource usage, in this case disk throughput,
limiting at 80 MBytes/sec. As justified below, we assume the full disk throughput can be
obtained, despite the use of scattered reads smaller than a sector in this construction.
The item Oblivious Merge Scramble cost is analogous: it represents the bottleneck cost

of log2 log2 n passes over the data at each level.

6.1. Discussion

The graph suggests an optimized implementation can achieve over 8 queries per second
on a 1 terabyte database, and over 5 queries per second on a 10 petabyte database. This
assumes, of course, the previously established c

√
n logn client storage.

We assume rotational-latency-free solid state disks (SSDs) because our sort requires scat-
tered data reading. However, use of SSDs does not immediately bring the observed disk
throughput up to the optimal disk throughput, for the following reason. Although the
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disk throughput is roughly on par with the other potential bottlenecks of client encryption
throughput and network throughput, the I/O operations speed of the disk comes into play
here. That is, even though we assume a latency-free SSD, scattered reads and writes smaller
than a sector size still have the cost of reading and writing the entire sector.
As an example, a somewhat tricky case to analyze arises once the data associated with

Bloom filter construction is too big to fit in server memory. The Bloom filters themselves
contain approximately 250 bits (≈ 50 of them set to 1) for every item stored at the level. In
our configuration, assuming Bloom filter segments of 16 bytes (each with a 16 byte MAC),
this works out to only around 6.25 GB of Bloom filter data for a 1 TB database. However,
the temporary lists used to scramble and build this same Bloom filter with privacy and
correctness require a whopping 320 GB. Recall that ≈ 50 Bloom filter positions per level
item are appended to a list, along with a MAC for each, and padded to be the same size as
a 32-byte Bloom filter segment.
The apparent effect is that sorting this 320 GB list might require a full disk sector read

and write per sort operation, when only 32 bytes are needed. This involves no additional
penalty when sorting items as big as (or a multiple of) the disk sector size, but potentially
cuts disk throughput by a factor of 128 when sorting our 32-byte Bloom filter positions.
This penalty is imposed in most of the passes, for example, of a Randomized Shell Sort as
in [Goodrich 2010]. On the other hand, the Oblivious Merge Sort described in [Williams
et al. 2011] would not impose this penalty (or even an analogous disk seek penalty), since
the data is read sequentially.
Where, then, does the Oblivious Merge Scramble stand? We show now that with intel-

ligent caching and room for
√
n sectors in server RAM, (e.g., 1 GB of RAM for a 1 TB

database is more than enough) we can avoid this disk I/O penalty. In the first step of the
Oblivious Merge Scramble, there are

√
n items being merged together at once. In this case,
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the entire contents of any single merge operation fit in RAM simultaneously, requiring only
a single sequential read at the beginning and a single sequential write at the end.
Observe that the remaining merge steps (2 through log2 log2 n), have two properties.

First, the subarrays are all size at least
√
n, which is greater than a disk sector for all

potentially problematic database sizes. That is, databases smaller than, e.g., 40962 blocks,
have Bloom filters small enough to be constructed entirely in server RAM. Second, the
total number of subarrays is at most

√
n. Together, these properties mean that an entire

sector (e.g. 4096 bytes) of every subarray can fit in server RAM. With careful disk cache
use, and calibrating subarray sizes to a multiple of the disk segment size, we can read data
sector-by-sector without wasting disk throughput. This means we can operate at the full
SSD disk throughput. Note that this does not imply sequential reading of the data (and
avoidance of the disk seek cost on a rotational disk).

7. CONCLUSIONS

In this paper we introduce a practical oblivious data access protocol with correctness. The
key insights lie in new constructions and sophisticated reshuffling protocols that yield prac-
tical computational complexity (to O((log n)(log2 logn))) and storage overheads (to O(n)).
This mechanism simultaneously provides full computational privacy and correctness.
While the construction described here can no longer be considered the most practical

construction to date, it has proved to be an important advance enabling more modern
ORAM constructions. To point toward the future directions of this work, we refer the reader
to two forthcoming constructions that use the ORAM techniques introduced here as their
fundamental building blocks. These ground-breaking constructions present new theoretic
results (the first single-round-trip log-storage ORAM) and new practical results (the first
Oblivious file system, and ORAM with unprecedented performance), respectively.

We present SR-ORAM, the first single-round-trip polylogarithmic time Oblivious
RAM that requires only logarithmic client storage. Taking only a single round
trip to perform a query, SR-ORAM has an online communication/computation
cost of O(log n log logn), and an offline, overall amortized per-query communica-

tion cost of O(log2 n log logn), requiring under 2 round trips. The client folds an
entire interactive sequence of Oblivious RAM requests into a single query object
that the server can unlock incrementally, to satisfy a query without learning its
result. This results in an Oblivious RAM secure against an actively malicious ad-
versary, with unprecedented speeds in accessing large data sets over high-latency
links. We show this to be the most efficient storage-free-client Oblivious RAM
to date for today’s Internet-scale network latencies.

[Williams and Sion 2012b]

Oblivious RAM throughput is increased by an order of magnitude, by enabling
client parallelism in high-latency environments. This critical piece is missing from
existing Oblivious RAMs, which typically require many communication rounds.
A construction is next presented to enforce de-amortization across a class of
Oblivious RAMs, drastically reducing the worst case query cost. These tech-
niques are shown to be fundamental to the construction of any efficient Oblivi-
ous RAM. A high performance, fully functional implementation is then developed
and analyzed, performing a query per second on a terabyte database over a 50ms
latency link. Finally, the implementation is used to construct privatefs, the first
Oblivious File System.

[Williams and Sion 2012a]
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