
Oblivious Outsourced Storage with Delegation

Martin Franz1 Peter Williams2 Bogdan Carbunar3

Stefan Katzenbeisser1,4 Andreas Peter4 Radu Sion2 Miroslava Sotakova2

1 Center for Advanced Security Research Darmstadt - CASED
2 Computer Science, Stony Brook University
3 Applied Research Center, Motorola Labs

4 Technische Universität Darmstadt

Abstract. In the past few years, outsourcing private data to untrusted
servers has become an important challenge. This raises severe questions
concerning the security and privacy of the data on the external storage.
In this paper we consider a scenario where multiple clients want to share
data on a server, while hiding all access patterns. We propose here a first
solution to this problem based on Oblivious RAM (ORAM) techniques.
Data owners can delegate rights to external new clients enabling them
to privately access portions of the outsourced data served by a curious
server. Our solution is as efficient as the underlying ORAM constructs
and allows for delegated read or write access while ensuring strong guar-
antees for the privacy of the outsourced data. The server does not learn
anything about client access patterns while clients do not learn anything
more than what their delegated rights permit.

1 Introduction

As data management is increasingly being outsourced to third party “cloud”
providers such as Google, Amazon or Microsoft, enabling secure, distributed
access to outsourced data becomes essential. This raises new requirements con-
cerning the privacy of the outsourced data with respect to the external storage,
network traffic observers or even collaborators who might have access to parts
of the outsourced database. In this scenario, a data owner O outsources his data
items to a server S. At a later time, he wishes to delegate read- or write access
to individual data items to third party clients C1, . . . , Cn. Since the data is po-
tentially privacy sensitive, strong confidentiality and privacy guarantees should
be in place. Clients should only be able to access those items they are given ac-
cess to. Moreover, potential adversaries should be unable to derive information
from the observed access patterns to the outsourced database. This is necessary,
as even the observation that one item is accessed more frequently than others
or the fact that one item is accessed by multiple clients, might leak sensitive
information about this particular item.

In the special case where the owner is the sole client accessing the data stored
on the server, the problem can be solved by applying techniques from Oblivious
RAMs [10, 21, 18]. An ORAM structure preserves not only data confidentiality



but also provides privacy for client data accesses. So far, the problem of hiding ac-
cess patterns in outsourcing database scenarios containing multiple (distrusted)
clients is open. In this paper we show that ORAM techniques can be adapted to
this scenario as well. To this end, we introduce a new ORAM feature: delegated
access. Data owners can delegate controlled access to their outsourced database
to third parties, while preserving full access privacy and data confidentiality.
Achieving this turns out to be non-trivial: in addition to preserving the owner’s
access privacy, we also need to ensure that (i) the server is unable to learn the
access patterns of any of the clients, (ii) no client is able to learn or modify any
information of items she cannot access and (iii) no client can learn the access
patterns of items which she cannot access herself.

1.1 Applications

We now describe several applications that can be built on the constructions we
propose in this paper.

Anonymous Banking: The numbered accounts supported by several banks
claim to provide user privacy. However, by allowing banks to trace the currency
flow and build access pattern statistics, they can be used to learn undesired
information, ultimately compromising privacy. The solution proposed in this
paper can be used toward preventing such leaks: Account numbers and details
are stored as records by the bank and account owners can delegate access rights
to other clients as desired. Since the data is accessed obliviously, the bank can
learn neither which records are being accessed nor the access rights associated
with users.

Oblivious Document Sharing: Document sharing applications such as Google
Docs suffer from obvious security and privacy shortcomings. Not only is the cen-
tral storage able to access the cleartext documents but it can also learn access
privileges as well as access patterns and exact contributions from individual
users. Our solution is the perfect fit for this problem: Users can store encrypted
documents, privately outsource read and write privileges and obliviously and
efficiently access desired documents as allowed by their permissions.

Rating Agency Access: Privacy is of paramount importance in financial mar-
kets. Public knowledge of investor interest can influence the ratings and prices
of company shares in undesired ways. The natural question to ask is, can an
investor privately obtain desired information about companies of interest? The
solution we provide in this paper answers this question affirmatively. A rating
agency maintains an ORAM with records containing ratings and general infor-
mation for individual companies. Each company owns its own records and can
delegate write access to specialized rating assessing companies and, at the same
time, an on-demand read-only access to clients that pay to privately access them.



1.2 Contributions

We devise delegated ORAM privacy and security properties, expressing the fact
that clients cannot learn any information about items which they are not allowed
to access. We provide a first construction of an ORAM with delegation that
satisfies this property while preserving the original ORAM privacy properties.
The construction relies on a new type of read, write and insert capabilities issued
by data owners for items that clients should be able to access. We also show how
data owners can efficiently revoke access rights.

2 Building blocks and related work

In this section we describe cryptographic primitives used in our solution, the
concept of ORAMs and other related work.

2.1 Cryptographic primitives

In the solution presented in this paper, we make use of the following primitives:

Symmetric encryption. We will use a symmetric encryption scheme to encrypt
items which are stored in the database. In particular, we employ an IND-CPA
secure, anonymous, verifiable, symmetric encryption scheme (E,D,K) where E
and D are the encryption and decryption algorithms and K is the key generation
algorithm which outputs the secret key [14].

Signatures. We also use an existentially unforgeable identity-based signature
scheme which consists of four algorithms (G,K,S,V). G outputs public operat-
ing parameters as well as a keypair containing a master public key MP and a
master secret keyMS ; KMS

(id) outputs a private signing key sid for an identity
id; S(sid ,message) and VMP

(signature, id ,message) are the signature generation
and verification algorithms. A concrete instantiation of an identity-based signa-
ture scheme can be found in [17].

2.2 Oblivious RAM

Oblivious RAM [10] provides access pattern privacy to clients (or software pro-
cesses) accessing a remote database (or RAM). The database is considered to be
a set of n encrypted pairs of the form (id , value), denoting an item value stored
under a searchable tag id , and supports read and write operations. Client access
privacy is obtained by maintaining two invariants: (i) never reveal the id values
of interest in a query and (ii) never look twice in the same spot for the same id .
Since we base our work on the “square root” solution [10], we briefly recall it
here:

The “square root” solution. In addition to the n locations reserved for items
of the database, the server maintains 2

√
n additional memory locations.

√
n of

them store dummy items (used to preserve access privacy as discussed below).



The remaining
√
n locations serve as a “cache” buffer. To hide the virtual access

pattern, the client first obliviously shuffles the database items together with
the
√
n dummy items, using a permutation chosen uniformly at random. The

suggested way to do that is the following: We assign all m := n +
√
n items a

tag, chosen at random from a space of size m2/ε, yielding a collision probability
of ε. Then the client sorts the items according to their tags obliviously, using
a universal sorting network (such as a Batcher network). Once the database is
shuffled,

√
n database accesses are possible by the client before another reshuffle

has to take place. To access an item id , the client first reads the entire buffer. If
id is not found there, the client retrieves it from the database by performing a
binary search for the element indexed by the random tag which was associated
to id upon the last reshuffle over all n +

√
n real- and dummy items stored on

the server. Notice that the location at which the item has been found does not
need to be kept hidden. This is because from the perspective of the server, any
database location can potentially store any item. If, on the other hand, id is
found in the cache buffer, the client retrieves a previously unread dummy item.
This is necessary to hide from the server whether the desired item id was found in
the buffer, and thus hide access patterns and inter-query correlation. Finally, the
client places the retrieved and re-encrypted item in the cache buffer. When the
buffer becomes full, the client obliviously reorganizes the items in the database
together with the ones in the cache buffer (while also generating new dummy
items), and the process is ready to repeat.

Clearly, from the server’s point of view, the database locations are accessed
in a random order and each of them at most once. Per each access, the procedure
achieves an (amortized) overhead of O(

√
n log2 n). As discussed in [10], the result

can be optimized to achieve an O(
√
n log n) computational overhead.

2.3 Related work

Private Information Retrieval. Another set of existing mechanisms handle
access pattern privacy (but not data confidentiality) in the presence of multiple
clients. Private Information Retrieval (PIR) [5] protocols aim to allow (arbi-
trary, multiple) clients to retrieve information from public or private databases,
without revealing to the database servers which records are retrieved.

In initial results, Chor et al. [5] proved that in an information theoretic
setting, any single-server solution requires Ω(n) bits of communication. PIR
schemes with only sub-linear communication overheads, such as [5], require mul-
tiple non-communicating servers to hold replicated copies of the data. When
the information theoretic guarantee is relaxed single-server solutions with better
complexities exist; an excellent survey of PIR can be found online [8, 9].

Recently, Sion and Carbunar [19] showed that due to computation costs, use
of existing non-trivial single-server PIR protocols on current hardware is still
orders of magnitude more time-consuming than trivially transferring the entire
database. Their deployment would in fact increase overall execution time, as
well as the probability of forward leakage, when the present trapdoors become
eventually vulnerable – e.g., today’s queries will be revealed once factoring of



today’s values will become possible in the future. Their result goes beyond exist-
ing knowledge of mere “impracticality” under unfavorable assumptions. On real
hardware, no existing non-trivial single server PIR protocol could have possibly
had out-performed the trivial client-to-server transfer of records in the past, and
is likely not to do so in the future either. This negative result is due to the fact
that on any known past general-purpose Von Neumann hardware, it is simply
more expensive to PIR-process one bit of information than to transfer it over a
network.

Hardware-aided PIR. The recent advent of tamper-resistant, general-purpose
trustworthy hardware such as the IBM 4764 Secure Co-Processor [12] has opened
the door to efficiently deploying ORAM privacy primitives for PIR purposes (i.e.,
for arbitrary public or private data, not necessarily originated by the current
client) by deploying such hardware as a trusted server-side client proxy.

Trusted hardware devices however are not a panacea. Their practical limita-
tions pose a set of significant challenges in achieving sound regulatory-compliance
assurances. Specifically, heat dissipation concerns under tamper-resistant re-
quirements limit the maximum allowable spatial gate-density. As a result, general-
purpose secure coprocessors are significantly constrained in both computation
ability and memory capacity, being up to one order of magnitude slower than
host CPUs.

Asonov was the first to introduce [1] a PIR scheme that uses a secure CPU
to provide (an apparent) O(1) online communication cost between the client and
server. However, this requires the secure CPU on the server side to scan portions
of the database on every request, indicating a computational complexity cost of
O(n), where n is the size of the database.

An ORAM-based PIR mechanism is introduced by Iliev and Smith [13], who
deploy secure hardware to achieve a cost of O(

√
n log n). This is better than the

poly-logarithmic complexity granted by ORAM for the small database sizes they
consider. This work is notable as one of the first full ORAM-based PIR setups.

An improved ORAM-based PIR mechanism with O(n/k) cost is introduced
in [20], where n is the database size and k is the amount of secure storage. The
protocol is based on a careful scrambling of a minimal set of server-hosted items.
A partial reshuffle costing O(n) is performed every time the secure storage fills
up, which occurs once every k queries. While an improvement, this result is
not always practical since the total database size n often remains much larger
than the secure hardware size k. For k =

√
n, this yields an O(

√
n) complexity

(significantly greater than O(log log n log n) for practical values of n).

In [22] Williams et al. introduced a faster ORAM variant which also features
correctness guarantees, with computational complexity costs and storage over-
heads of only O(log n log log n) (amortized per-query), under the assumption of
O(
√
n) temporary client storage. In their work, the assumed client storage is

used to speed up the reshuffle process by taking advantage of the predictable
nature of a merge sort on uniform random data.



Oblivious Transfer with Access Control. Camenisch et al. [4] study the
problem of performing k sequential oblivious transfers (OT) between a client
and a server storing N values. The work makes the case that previous solutions
tolerate selective failures. A selective failure occurs when the server may force
the following behavior in the ith round (for any i = 1, . . . , k): the round should
fail if the client requests item j (of the N items) and succeed otherwise. The
paper introduces security definitions to include the selective failure problem and
then propose two protocols to solve the problem under the new definitions.

Coull et al. [6] propose an access control oblivious transfer problem. Specif-
ically, the server wants to enforce access control policies on oblivious transfers
performed on the data stored: The client should only access fields for which it
has the credentials. However, the server should not learn which credentials the
client has used and which items it accesses.

Camenisch et al. [3] propose another solution that makes use of capabilities
to enable clients to obliviously transfer items from a server. Regardless of the
outcome of the interaction between a client and a server, the server does not
learn which capabilities the client has. Moreover, the client retrieves the item
only if it has enough capabilities to do so. Note however that this is different from
our solution, since our solution also allows clients to obliviously write/modify
items they can access. Thus, an oblivious transfer is not sufficient.

3 Model

Let O be a database owner and S be a server that stores the database. In its
simplest form, the database is stored as a set of n pairs, D = {(id1, v1), . . . ,
(idn, vn)}, where id denotes a unique identifier and v is the value stored under
it. We will assume that the data owner knows all the IDs of items stored in his
database (or has a an efficient way to compute them directly when needed). A
set of clients C = {C1, . . . , Cc} is given access to items from D. In our approach,
the database owner O delegates the rights to access items by handing out certain
capabilities. We focus on the management of individual items, where a client is
provided with access to a single item at a time. While this model can be extended
to handle multiple items (e.g., request access to a contiguous range between id1

and id2 or to all items in a table column whose values exceeds v1), we prefer
our model for simplicity of exposition. We further assume that each client has
a secure communication channel to communicate with the data owner. We give
a construction for an oblivious database D-ORAM which supports the following
operations:

• Setup(): Operation called by the owner to generate the initial D-ORAM.

• Store(id , v): Operation that allows the owner to insert a new (id , v) pair into
the D-ORAM.

• DStore(id , C, ctr , ctrC): Operation that allows the owner to insert a new
dummy item for client C into the D-ORAM.



• Delegate(C,id,op): Delegate to a client C the right to access an item id with
operation op (Read, Write or Insert).

• Read(id,cap): Access the value of id, thereby using capability cap.

• Write(id,newV,cap): Modify the value stored under id to newV, thereby using
capability cap.

• Insert(id,v,cap): Insert a value v under id using capability cap.

• Reshuffle(ctr): Reshuffle the D-ORAM, where ctr stores the number of reshuf-
fles performed so far on the D-ORAM.

We note that it is further possible to revoke access rights; this can be done
efficiently by changing the item key kid . After changing kid , the data owner
sends the new key to all clients who were allowed to access the item and were
not revoked access rights. To efficiently distribute the new key, we suggest to use
broadcast encryption (see Section 5.2).

In our analysis, we assume an honest but curious server. The server is trusted
to run any protocol correctly, while trying to collect additional information (ac-
cess patterns or values accessed). We further assume the clients to be purely
malicious: They can try to read items they cannot access, modify items even
if they only have the right to read them, or learn about the access patterns of
other clients. However, we guarantee these strong constraints only for items for
which no permissions were given to a corrupted client. Note that this is a natu-
ral assumption: It is impossible to prevent a malicious client from publishing an
item’s content via other channels or to reveal that an item has been accessed.
Furthermore we assume that the owner is trusted – he knows which clients can
access which items, and he has full control over the database if desired.

Before building a delegated ORAM, we need to define its security properties.
In order to achieve security goals against the server, these need to capture all the
security guarantees offered by the standard, single-client ORAM. We therefore
require the D-ORAM to satisfy the security properties against a curious server
as outlined in [10] and the following security properties against malicious clients:

• Access Security: An D-ORAM offers Access Security, if no client can read or
write an item id ∈ D-ORAM without having proper capabilities.

• Access Privacy: We say that an item id in D-ORAM has been compromised,
if there exists a corrupted client CM with access to id . An D-ORAM offers
Access Privacy, if for any item id ∈ D-ORAM, which has not been compro-
mised, no client without access to id can tell with non-negligible probability
whether the item has been accessed, or not.

4 The Delegated ORAM Solution

Our solution is built on the “square root” ORAM variant described in Section
2 and relies on a novel use of capabilities. The data owner O issues a capability
allowing a client C to access a certain item in the D-ORAM. Recall that in the
square root ORAM, the database stores n+

√
n items, where n items are “real”



and
√
n items are dummy values. Thus, in our solution, each client is assumed

to have access to
√
n dummy or private items – real items that no other client

can access. This increases storage at S by c
√
n, where c is the number of clients.

In the following we will make extensive use of a buffer called “cache” buffer of
size
√
n stored at S. The buffer starts empty.

Each item id stored in the D-ORAM has a key associated with it, denoted
by kid . The item is stored encrypted with kid , providing confidentiality from S.
O either stores all keys or is able to compute them on demand (e.g., using a
private, general purpose database key and a pseudo-random generator). Each
item is stored in the D-ORAM as a (tag, v, keybox) triplet, where tag is a public
pseudo random string (derived from id as shown below) used to retrieve the item
from the D-ORAM, keybox is an encrypted version of the item key kid which will
be used during the reshuffle and v denotes an encryption of the actual database
item. The latter includes the item id , the actual value stored under this id,
a version number for this item (which will be incremented upon each write
operation) as well as a signature which allows to verify that the item-value was
written correctly. C is allowed to access an item id only if it knows kid . Thus, a
capability for id needs to include kid .

Tag Generation. Each item id in the database (including the dummy values)
is assigned a tag, chosen pseudorandomly. Note that, if these tags were chosen
uniformly at random, after each reshuffle O would have to notify each client C
of the new tags assigned to items (including the dummy ones) it can access. To
avoid this, we compute the tags as t(id) := h(id , ctr , kid), where h is a publicly
known pseudo random function, ctr is a counter, which counts the number of
reshuffle operations performed so far, and kid is the secret key corresponding to
item id. This ensures that clients allowed to access item id (i.e., that know kid)
will be able to determine its tag after a reshuffle.

Keeping track of the tags for dummy items is done similarly. Each client main-
tains a personal counter ctrC , indicating the number of unused dummy items.
Using a unique client dummy password dC , the current value of the counter ctr
(which counts the number of reshuffle operations) and the personal counter ctrC
we compute the tags as h(dC , ctr , ctrC). The passwords dC will be unique for
each client, known to only client and the data owner.

4.1 D-ORAM Operations

The Setup operation is called by the owner before the first D-ORAM operation
is performed to populate the RAM.

Setup(). Initially,O calls the operation G of an identity based signature scheme,
which outputs a master secretMS and a public master keyMP . He further sets
ctr := 0 and chooses a symmetric key kO which will be used exclusively by O.
Next, he calls the Store and DStore n+c

√
n times, once for each data or dummy

item that needs to be stored in the D-ORAM. Notice that O will add these items
in random order to the D-ORAM (to hide from the server which of them are
dummy items). Furthermore, he allocates an empty cache buffer.



Store(id , v, C, ctr). Store is executed by O when a new data item is to be
inserted into the D-ORAM. O generates a secret key kid ∈ {0, 1}k and uses
KMS

to generate a private key sid for the value id . Further, O generates the tag
t(id) and outputs (t(id), ev, EkO (kid)), where ev = Ekid (id , v, 0,S(sid , (v, 0)) is
the encryption of item id with version number 0. The value EkO (kid) will help O
to recover the decryption key when presented with the encrypted item. Finally,
O asks the server to insert this tuple in the database.

DStore(id , C, ctr , ctrC). The owner executes this operation to insert a dummy
item for some client C = Ci. DStore generates a tag tag = h(dC , ctr , ctrC) for
client C and counters ctr , ctrC and a string s having the same distribution as
the output of E(·). Finally, the triplet (tag, s, EkO (“dummy”, C, ctr)) is added
to the D-ORAM.

We now describe the capability issuing operation, performed by O.

Delegate(C, id , op). This operation outputs a capability cap which can be used
in Read, Write or Insert operations. First generate the value kid just like in the
Store operation. Next, if op = Read, output the tuple (id , kid) and return. If op =
Write, generate the secret signing key sid (just like in Store), output (id , kid , sid)
and return. If op=Insert, output (id , kid , sid , EkO (kid)) and return.

The Read, Write and Insert operations behave similarly to their basic ORAM
variant. They are executed by a client C.

Read(id , cap). Given a capability cap = (id , kid), scan all cache buffer items
starting from the most recently added. Retrieve each element as (value, keybox).
Decrypt each element value using the key kid . If any decryption has the for-
mat (id , v, ver, sig), then check that VMP

(sig, id , (v, ver)) verifies correctly. Note
that since we are using an identity based signature scheme, each signature can
be verified by using the value id and the master public key MP . If the check
does not verify, discard the item and continue with the next item. If no correct
item is found, compute the tag t(id) and request the item with this tag from the
D-ORAM database, obtain element (tag, value, keybox) and decrypt its second
field value. If the desired element had been found in the cache buffer, request the
next unused dummy item from the D-ORAM database and obtain (td, s, keybox)
– discarding values td and s immediately while storing the value keybox. If all ver-
ifications pass and the decryption has been performed correctly, use the value v
as the actual item value. Finally, re-encrypt the message m = Ekid (id , v, ver, sig)
using kid . It is necessary to re-encrypt this message before storing the item back
into the buffer, to hide from the server whether it was found in the buffer or had
been retrieved from the main database. Insert the result into the cache buffer
along with the value keybox of the item which was requested from the main D-
ORAM database (note that we always use the value keybox derived from the
main database – real or dummy item – in order to keep all D-ORAM accesses
indistinguishable). Output v and return.



Write(id , newV, cap). Given a capability cap = (kid , id , sid), proceed as in
Read, except that the value appended to the cache buffer is Ekid (id, newV, ver +
1,S(sid , (newV, ver + 1)), where ver is the version number of the most recent
item id when scanning the buffer and the main database.

Insert(id , v, cap). For a given capability cap = (id , kid , sid , EkO (kid)), append
the tuple (m, keybox) = (Ekid(id , v, 0,S(sid , (v, 0)), EkO (kid)) to the cache buffer.
Note that, by adding items in this manner, the server will notice when an in-
sert has occurred. This problem can be prevented by adding sufficiently many
dummy items to the initial ORAM and replacing them with real items whenever
Insert is called. In fact, this can as well be done incrementally: If it is known
that the database on average grows by k items per epoch, the data owner can
add additional k dummy items during each re-shuffle operation. This efficiently
hides the time the Insert occurred. To support incremental inserts, some minor
adaptions to our construction are necessary. In particular, the form of dummy
elements needs to be changed slightly to allow the data owner to recover the
correct value keybox during the reshuffle.

Reshuffle(ctr). The database Reshuffle operation is performed by O. The
reshuffle is performed in five steps:
Step 1: Use E(·) to encrypt each item in the D-ORAM (including the buffer)
with a fresh session key krs, used exclusively to perform the reshuffle. Note that
this essentially works like a second layer of encryption for items in the database.
Thus, in steps 2 - 4 we will always assume that items are first decrypted using
krs when accessed by the data owner, and encrypted again before stored back
on the server.
Step 2 (Clean the Cache): O verifies the validity of each updated item: items
which fail to verify correctly should never appear in the main database. Down-
load each element (v, keybox) from the buffer, starting at the last inserted item.
Perform the following actions:

– If DkO (keybox) = kid and Dkid (v) correctly decrypts and verifies to a valid
item id, continue by scanning the earlier items in the buffer. Mark items
with the same id for deletion.

– If DkO (keybox) contains “dummy”, scan the earlier items in the buffer until
a valid value keybox, containing the correct key kid , is found. Update the
keybox encryption to EkO (kid) and continue.

– Otherwise (e.g. if the signature can not be verified or if no valid key kid
could be determined), mark the item as invalid and continue.

Step 3: Read each item stored in the D-ORAM, generate a new tag t(id) for it
and store it back.
Step 4: Perform the re-shuffle operation as described in the basic square-root
ORAM solution [10], i.e. obliviously update the database items’ values according
to the buffers, re-encrypt them using the corresponding key kid , and obliviously
permute the database locations.
Step 5: Decrypt each item in the D-ORAM with the session key krs.



4.2 Security Analysis

We discuss the security of our construction as introduced in Section 3.

Security against a curious server. The proof is identical to the one for ORAM
with only one client [10]. It is easy to verify that, from the server’s point of view,
every time the D-ORAM is accessed, all operations are performed in precisely
the same way. In particular, in the reshuffle the steps 1, 2, 3 and 5 are performed
in the same deterministic way in each epoch, while step 4 consists of the reshuffle
used in the single client ORAM [10]. All values the server can see are pseudo
random and therefore do not reveal information to the server.

Security against malicious clients. The construction achieves D-ORAM Access
Security : First, notice that an unauthorized attempt to overwrite an item can
be detected and the original item’s value retrieved by any other client who is
allowed to access this item. Even if a corrupted client knew kid , the unforge-
ability property of the signature scheme ensures that without knowing sid , he
cannot produce a valid signature of a new item’s value v. Hence, if a client finds
that supposedly a new item’s value is not correctly signed, he simply uses the
last one that passes the signature verification in his computation. Also, in the
reshuffle phase, the owner ensures that the items are updated to their correctly
signed values. Notice further that IND-CPA security of the encryption scheme
guarantees confidentiality for each item, in the sense that no collusion of clients
without the capability to read this item can learn its value.

Furthermore, the solution also provides D-ORAM Access Privacy : To show
that a client, who cannot access any of the items in a set, learns nothing about
the computation on them, we use the same argument as in the case of the server:
In case that no malicious client compromised the privacy of item id , every access
to this item is indistinguishable from a random access to the D-ORAM for all
clients who are not able to access item id .

4.3 Complexity

Using a Batcher network to shuffle a database containing n regular and d =
c
√
n dummy items requires O((n+ d) log2(n+ d)) comparisons. In addition, a

reshuffle requires O(n+ d) operations (encrypt/decrypt each item once, update
the buffer). When manipulating one item, O(

√
n) items need to be read. Hence,

between two reshuffles, O((n+ d) log2(n+ d) + n+ d) = O((n+ d) log2(n+ d))
operations are needed. We therefore get the amortized complexity to be of order
O(n+d√

n
log2(n+d)) = O((

√
n+c) log2(n+d)), where we assume that c is a small

constant compared to
√
n.

5 Discussion

5.1 Beyond A Curious Server

While above we considered the case of a curious yet otherwise honest server,
here we discuss also some insights into malicious server behavior.



It makes little sense to handle outright denial of service behavior at this
level, as the server has many natural avenues at his disposal to restrict service,
including simply shutting down. More interesting to explore are attacks in which
the server illicitly and undetectably manages to satisfy its curiosity by behaving
incorrectly. We distinguish a set of scenarios, some of which are discussed in
the following.

Fork Consistency. The server may attempt to partition the set of clients, and
maintain separate versions of the database state (buffer, main database) for each
partition. This partitioning attack has been examined in previous literature; if
there are non-inter-communicating asynchronous clients, the best that can be
guaranteed is fork consistency [15]. This is not as weak of a guarantee as it may
appear, as once the provider has created a partition, the provider must block all
future communication between partitioned clients, or else the partition will be
immediately detected.

Altering Responses. Additionally, the server may attempt to substitute messages
and previously read data for new requests. This can naturally be addressed by
a combination of minimal client state based mechanisms that can checksum
the server responses. For instance, the client could deploy Merkle tree based
approaches coupled with item versioning to defend against such attacks. As
numerous existing efforts already addressed such mechanisms we chose not to
detail them here.

Timing Attacks. In such attacks, the server measures the time intervals taken
by a client to parse the buffers and to access the ORAM database. This might
enable the server to learn which type of operation was performed, and/or where
the desired item was found. We suggest to prevent this attack by introducing the
requirement that each access to an item stored on the server (buffer or database)
takes the same time. This can be achieved by each client using additional timers
to “uniformize” inter-request times.

5.2 Efficient Access Right Updates Using Broadcast Encryption
Schemes

In the protocol construction, we omitted the details of access right updates. A
naive solution to revoke the access rights of a set of clients to a particular item,
is to change the item’s secret key kid and broadcast a new key, encrypted with
the public keys of all clients in the target set. If there are c clients, this solution
potentially requires to encrypt the item’s secret key with Θ(c) public keys.

A more efficient way to solve the problem is to use broadcast encryption
schemes [2, 7, 16, 11]. The main idea of broadcast encryption schemes is to asso-
ciate keys to the subsets of clients and represent any set of privileged clients as
a union of these subsets. In the naive solution, each client is given a unique key.
A better result can be achieved by building a binary tree of keys with clients
representing its leaves, and give each client all private keys on the path from
the corresponding leaf to the root. The privileged set of clients is then covered
by a set of subtrees and the (public key, private key)-pairs in the roots of these



subtrees are used for encryption/decryption of an item’s content. This scheme is
still inefficient if access right updates involve revoking small sets of clients. For
instance, to revoke a single client, log c subtrees might be needed to cover all the
remaining clients.

A better performance is achieved in [16, 11]. Following the approach of Halevy
and Shamir [11], any set of r clients can be revoked by the owner, broadcast-
ing only O(r) (at most 4r) encryptions. In this scheme, each client is given

O(log1+ε c) private keys (O(log3/2 c) in the basic case of practical interest) and
performs O(log c) decryption operations.

6 Conclusions

In this paper we study the problem of delegating access to an outsourced private
database to multiple clients, while preserving the access privacy of all involved
entities. Our solution extends existing ORAM flavors with the notion of capa-
bilities, allowing data owners to delegate and revoke permissions and clients to
privately read, write and insert items. We show that our solution provides rea-
sonable security guarantees and protects the privacy of the involved parties. We
further note that more efficient versions of ORAM can be constructed based on
the so called “poly-log”-solution [10]. While in this paper we provide a basic
ORAM solution which allows to give access to the ORAM to multiple parties,
it might be interesting to investigate whether similar solutions could be applied
to the more efficient “poly-log”-solution. We leave these, as well as further opti-
mizations, as future work.

Acknowledgments

We thank Ian Goldberg for insightful discussions and the anonymous review-
ers of FC’11 for helpful comments. Sion and Sotakova were supported by NSF
through awards 0937833, 0845192, and 0803197, as well as by CA Technolo-
gies, Xerox, IBM and Microsoft Research. This work was supported by CASED
(http://www.cased.de), the German Research Foundation (DFG) and DAAD.

References

1. D. Asonov. Querying Databases Privately: A New Approach to Private Information
Retrieval. Springer Verlag, 2004.

2. Shimshon Berkovits. How to broadcast a secret. In Advances in Cryptology—
EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 535–
541. Springer, 1991.

3. Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer with
access control. In CCS ’09: Proceedings of the 16th ACM conference on Computer
and communications security, 2009.

4. Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivi-
ous transfer. In EUROCRYPT ’07: Proceedings of the 26th annual international
conference on Advances in Cryptology, 2007.



5. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In IEEE Symposium on Foundations of Computer Science, pages 41–50, 1995.

6. S. Coull, M. Green, and S. Hohenberger. Controlling access to an oblivious database
using stateful anonymous credentials. In International Conference on Practice and
Theory in Public Key Cryptography (PKC), 2009.

7. Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryptology—
CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 480–491.
Springer, 1993.

8. W. Gasarch. A WebPage on Private Information Retrieval. Online at http:

//www.cs.umd.edu/~gasarch/pir/pir.html.
9. W. Gasarch. A survey on private information retrieval. Online at http://

citeseer.ifi.unizh.ch/gasarch04survey.html.
10. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-

ious rams. Journal of the ACM, 43:431–473, 1996.
11. Dani Halevy and Adi Shamir. The lsd broadcast encryption scheme. In Advances

in Cryptology—CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science,
pages 47–60. Springer, 2002.

12. IBM. IBM 4764 PCI-X Cryptographic Coprocessor. Online at http://www-03.

ibm.com/security/cryptocards/pcixcc/overview.shtml, 2007.
13. A. Iliev and S.W. Smith. Private information storage with logarithmic-space secure

hardware. In Proceedings of i-NetSec 04: 3rd Working Conference on Privacy and
Anonymity in Networked and Distributed Systems, pages 201–216, 2004.

14. Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother: an
abuse-resilient transaction escrow scheme. In Advances in Cryptology—
EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages
590–608. Springer, 2004.

15. J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data Repository
(SUNDR). In OSDI 2004, pages 121–136.

16. Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes
for stateless receivers. In Advances in Cryptology—CRYPTO ’01, volume 2139 of
Lecture Notes in Computer Science, pages 41–62. Springer, 2001.

17. Kenneth G. Paterson. Id-based signatures from pairings on elliptic curves. Elec-
tronics Letters, 38:1025–1026, 2002.

18. Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Proceedings of
the 30th International Cryptology Conference, page to appear, 2010.

19. Radu Sion and Bogdan Carbunar. On the Computational Practicality of Private
Information Retrieval. In Proceedings of the Network and Distributed Systems Se-
curity Symposium, 2007. Stony Brook Network Security and Applied Cryptography
Lab Tech Report 2006-06.

20. Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private information
retrieval using trusted hardware. In Proceedings of the European Symposium on
Research in Computer Security ESORICS, pages 49–64, 2006.

21. Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage. In CCS
’08: Proceedings of the 15th ACM conference on Computer and communications
security, 2008.

22. Peter Williams, Radu Sion, and Bogdan Carbunar. Building Castles out of Mud:
Practical Access Pattern Privacy and Correctness on Untrusted Storage. In ACM
Conference on Computer and Communication Security CCS, 2008.


