

Cloud Performance Benchmark Series
Amazon Elastic Load Balancing (ELB)

Md. Borhan Uddin

Bo He

Radu Sion

ver. 0.5b

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

1. Overview

Experiments were performed to benchmark the Amazon Elastic Load Balancing (ELB)

service. ELB promises to offer fault tolerance of web applications and automatic scaling

on Amazon Elastic Compute Cloud (EC2) instances.

ELB distributes incoming application traffic across multiple Amazon EC2 instances in a

single or multiple Availability Zone(s). ELB scales its request handling capacity in

response to incoming application traffic. It detects unhealthy instances and

automatically redistributes traffic to healthy instances.

ELB was benchmarked with HTTP LAMP (Linux, Apache, MySQL, PHP) backend servers

using the HTTP performance benchmarking tool httperf. Httperf “is a tool for measuring

web server performance. It provides a flexible facility for generating various HTTP

workloads and for measuring server performance. The focus of httperf is on providing a

robust, high-performance tool that facilitates the construction of both micro- and

macro-level benchmarks.” (http://code.google.com/p/httperf/)

Four main different aspects of ELB were evaluated:

+ Gain or loss (bottleneck) in throughput due to the deployment of ELB.

+ Responsiveness of ELB to capacity fluctuations in the backend servers (agility)

+ Fairness of ELB traffic distribution among homogeneous backend servers

+ Convergence of ELB in case of failure or (re)start of back-end servers

2. Setup

ELB can be deployed on two different types of Amazon EC2 instances: intra-zone (all EC2

servers, probing machines and ELB are in single “availability zone”, Figure 1a), inter-zone

(EC2 servers, probing machines and ELB are in multiple availability zones, Figure 1b). ELB

can’t be configured to operate across multiple EC2 regions, however. It can be

configured only as single or multiple availability zone within a given region.

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Figure 1a: Intra-zone experimental setup

Four different types of instances were used as back-end servers: small, medium, large

and extra-large. Instances varied according to their memory, CPU, I/O and platform

configurations.

Figure 1b: Inter-zone experimental setup

In an initial setting, LAMP HTTP servers running on medium EC2 instances were

registered with an ELB. Then, the ELB was probed from extra-large EC2 instances

running Httperf and several custom perl scripts aggregating the results.

The servers’ configurations were identical in terms of memory, platform, and allocated

EC2 Compute Units. As a reminder, 1 ECU aims to approximate an Intel 1.0-1.2 GHz 2007

Opteron or 2007 Xeon CPU. Processing power is structured as a set of multiple virtual

cores (VC). A VC in turn is considered as a collection of ECUs (and has an associated

number of ECUs/VC). Thus, the total number of ECU compute units can be computed by

ELB

Server 1

us-east-1a

Server 2

us-east-1a

Server 3

us-east-1a

Server 4

us-east-1a

Probing Machines

us-east-1a

ELB

Server 1

us-east-1a

Server 2

us-east-1c

Server 3

us-east-1d

Probing Machines

us-east-1a

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

knowing the number of virtual cores and the number of ECUs per virtual core. Table 1

shows the configurations of the EC2 instances:

Instance Size
Memory

(GB)

Total ECU

(=VC* ECU/VC)
Platform AMI Id

Small 1.7 1 (=1*1) Fedora 32-bit ami-2cb05345

Medium 1.7 5 (=2*2.5) Fedora 32-bit ami-2cb05345

Large 7.5 4 (=2*2) Fedora 64-bit ami-86db39ef

Extra Large 15 8 (=4*2) Fedora 64-bit ami-86db39ef

Table 1: Configurations of the EC2 Instances. (ECU = EC2 Compute Unit, VC= Virtual Core)

ELB configuration parameters are not publicly alterable. The following are some of the

interesting ones:

Health Check Interval - time interval that ELB probes the servers to check the health of

servers.

Unhealthy Threshold - maximum number of consecutive health check failures allowed,

after which the server will be claimed as unhealthy. ELB no longer routes traffic to

unhealthy Amazon EC2 instances and instead re-distributes the load across the

remaining healthy ones.

Healthy Threshold - minimum number of consecutive successful health checks for a

server to be deemed healthy again, after which ELB will start routing traffic to it.

Response Timeout - maximum time allowed for a server to respond to a health check

request. If timeout occurs the health check is counted as a failure.

Protocol - health checking can use different protocols (e.g., HTTP, HTTPS, TCP, UDP).

Port number – server port number pinged by health checker.

Path - Server-side target URL for health checks using HTTP.

The default values of these parameters are illustrated in Table 2.

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Name

Health Check

Interval

(Seconds)

Unhealthy

Threshold

Healthy

Threshold

Response

Timeout

(Seconds)

Protocol Port Path

ELB 30 2 5 5 HTTP 80 /index.php

Table 2: Configurations of Elastic Load Balancing (ELB) service

Four main benchmarking categories were performed: Gain/Loss, Agility/Awareness,

Fairness and Convergence.

2.1. Setup for Gain/Loss (bottleneck) testing due to deployment of ELB

a. Throughput

To measure whether deployment of ELB causes any gain (boost-up) or loss (bottleneck)

in throughput, we ran the same load with and without deployment of ELB both in intra-

zone (Figure 1a) and inter-zone (Figure 1b) setups.

With ELB: For both intra-zone and inter-zone setup, four EC2 medium servers were

linked to one ELB, and probed with batteries of requests ranging from 1 to 2
16

 HTTP

requests per second, through the ELB. Each battery was run for 3 minutes. To identify

any bottlenecks introduced by ELB, logging of requests and responses was done in both

the probing machines and in individual servers.

Without ELB: For both intra-zone and inter-zone setup, four medium servers were

probed one at a time at rate increasing from 1 to 2
16

 HTTP requests per second. Each

battery of requests was run for 3 minutes.

b. Cost:

We thought it would be interesting, in addition to identifying throughput bottlenecks, to

also compute the additional ELB-introduced dollar cost per HTTP

transaction/connection. Amazon pricing at the time of the experimentation is included

here for reference. Figure 2a shows an example hourly pricing chart of Amazon EC2 On-

Demand instances. For running EC2-hosted HTTP servers, pricing of both compute

instances and the cost of in- and e-gres data transfers need to be considered.

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Figure 2a: Pricing (Hourly Rate) of Amazon EC2 On-demand machines (amazon.com)

Furthermore, running HTTP with with ELB incurs two more cost factors, namely the ELB

cost and the ELB-related data transfer cost. Figure 2b shows an example hourly pricing

chart of Amazon ELB.

Figure 2b: Pricing (Hourly Rate and Data Processed Rate) of Amazon ELB (amazon.com)

The cost per connection in US microCents is as follows:

Cost per connection without ELB (in microCent) � �
���	��	
�		��	��		���

���	������∗����
�	(EC2 Server

Data Transfer price rate*Amount of Data Transferred per connection))*(10
8
)

Cost per connection with ELB (in microCent) � �
���	��	
�		��	��		�������	��	��		���

���	������∗����
�	(EC2

Server Data Transfer price rate + ELB Data Processing price rate)*Amount of Data

Transferred per connection)*(10
8
)

2.2. Setup for Agility/Awareness Testing

The idea here is to test whether ELB correctly adapts to the capacity of the back-ends.

The setup was as follows: the set of back-ends consisted of a small, medium, large and

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

extra-large HTTP LAMP servers in us-east-1a, all linked to an ELB. The probing machines

were also in us-east-1a, sending requests to the ELB at a rate increasing from 1 to 2
16

requests per seconds. Each battery of requests was run for 3 minutes.

2.3. Setup for Fairness Testing

Similarly, we checked whether ELB is fairly routs traffic to similar back-ends. This was

done in two different setups: intra-zone (four HTTP servers and probing machines were

located in the same EC2 zone and region, us-east-1a, as in Figure 1a), and inter-zone

(one HTTP server in each of us-east-1a, us-east-1c, and us-east-1d, probing machines in

us-east-1a, all under the same region, as in Figure 1b).

2.4. Setup for Convergence Testing

Finally, experiments were performed to evaluate the speed and accuracy of ELB health

checks. This was achieved partly by programmatically turning back-ends on/off through

a set of perl scripts controlled by the probing machines. The identical setting to the one

for the intra- zone fairness benchmark was applied. Here both HTTP servers and probing

machines were located in the us-east-1a zone.

3. Results
3.1. ELB bottlenecks

a. Throughput

No bottleneck has been observed due to ELB deployment at low to moderate loads.

However, at higher loads, ELB causes significant throughput bottlenecks. Figure 3a and

3b depict this phenomenon for intra-zone and inter-zone setups respectively.

In the intra-zone setup (Figure 3a) up to a certain load (256 connection requests per

second), the observed aggregate throughput of the 4 individual servers without ELB is

identical to the throughput of ELB-enabled servers.

Beyond 256 connection requests per second, ELB throughput quickly degrades to under

30% of the non-ELB setup. Once there, overall throughput remains relatively stable for

both setups in the intra-zone setup.

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Figure 3a: Gain/Loss due to ELB in intra-zone setup (Indivudual Servers vs. ELB+Servers)

Figure 3b depicts the same phenomenon for inter-zone setup. This time for loads up to

512 connection requests per second, the aggregate throughput of the 3 individual

servers without ELB is the same as the ELB throughput. Beyond that limit, ELB

throughput drops often to under 25% of the individual servers’ aggregate throughput.

Moreover, this ELB throughput shows relative instability.

Figure 3b: Gain/Loss due to ELB in inter-zone setup (Servers without ELB vs. Servers with ELB)

0

200

400

600

800

1000

1200

1400

1600

1 4 16 64 256 1024 4096 16384 65536

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
S

e
co

n
d

Load (Requests/second)

4 individual

servers

4 servers

behind ELB

0

200

400

600

800

1000

1200

1 4 16 64 256 1024 4096 16384 65536

H
T

T
P

 C
o

n
n

e
ct

io
n

/S
e

co
n

d

Load (Requests/second)

3 Individual

Servers

3 Servers

behind ELB

C l o u d B e n c h m a r k s : A m a z o

Thus, for both intra-zone and inter

bottleneck. The bottleneck seems to be more severe in

throughput instability at higher load

zone setup with ELB.

b. Cost:

Overall per-connection cost for both

zone setups is illustrated in micr

inter-zone setups, ELB costs always more.

seems to be stable for both intra

average, inter-zone setups’ per

Figure 4a: Cost/connection in i

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g

zone and inter-zone setups, ELB seems to introduce a significant

bottleneck seems to be more severe in inter-zone setup

nstability at higher load seems to be one of the most major cons in inter

ost for both ELB and non-ELB settings in intra-zone and inter

s is illustrated in microcents in Figures 4a and 4b. In both intra

costs always more. At higher loads, the cost per

seems to be stable for both intra-zone and inter-zone setup with and without ELB.

s’ per-connection costs are higher than intra-zone setup

Cost/connection in intra-zone setup

a l a n c i n g (E L B)

introduce a significant

zone setups. The

major cons in inter-

zone and inter-

oth intra-zone and

s, the cost per connection

zone setup with and without ELB. On

zone setups’.

C l o u d B e n c h m a r k s : A m a z o

Figure 4b: Cost/connection in i

3.2. Agility (awareness) of ELB

To understand the adaptability of ELB to different configurations, we experiment

heterogeneous back-ends.

Figure 5: Agility (a

0

20

40

60

80

100

120

140

1 4 16

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
S

e
co

n
d

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g

Cost/connection in inter-zone setup

Agility (awareness) of ELB

To understand the adaptability of ELB to different configurations, we experiment

Agility (awareness) of ELB on capacity of back-end servers

64 256 1024 4096 16384

Load (Requests/Second)

a l a n c i n g (E L B)

To understand the adaptability of ELB to different configurations, we experimented with

end servers

Small

Medium

Large

Xlarge

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

We observed that ELB distributes traffic somewhat according to back-end capacity only

at high load, and not at low-moderate load. Figure 5 depicts this phenomenon. Up to

rates of 256 connection requests/second, no major difference between the numbers of

requests each server receives can be observed. Beyond that rate, ELB starts to distribute

traffic according to capacity. Smaller instances receive a lower number of requests, and

larger servers receive higher numbers of requests.

A certain RAM-dependent behavior can also be observed. In this setup, the instances

with the most amount of RAM (medium) achieve the highest throughput. This suggests

that memory starvation and the triggering of swapping may be main throughput-limiting

factor.

3.3. Fairness

In an intra-zone setup, no significant variation between ELB-distributed server loads has

been observed. The biggest difference was about 5% of total requests received.

Figure 6: Fairness testing results in intra-zone setup

In the inter-zone setup, the probing machines were located in zone us-east-1a. All HTTP

servers were equally distributed in among available zones, one server in each zone: us-

east-1a, us-east-1c, and us-east-1d.

0

20

40

60

80

100

120

140

1 4 16 64 256 1024 4096 16384 65536

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
S

e
co

n
d

Load (Requests/second)

Server 1

Server 2

Server 3

Server 4

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Significant differences were observed, most likely due to inter-zone network-related

bottlenecks. In fact, the default ELB behavior seems to be to route all traffic to any

available server until its capacity is exhausted, and only then route elsewhere. Thus, in

inter-zone setup ELB does not treat individual back-ends fairly.

Figure 7: Fairness testing results in inter-zone setup

3.4. Convergence

In this experiment, both the probing machines and back-ends were in the same EC2

zone. Custom throughput monitoring PERL scripts were running on the probing

machines, generating load through Httperf at a rate of just under 256 requests per

second (experimentally determined optimal load for throughput comparison, see above).

The monitoring perl scripts were measuring throughput at ten second intervals.

Additional scripts were deployed remotely to back-ends on and off in a cycle: every

three minutes, HTTP service in one additional back-end was turned off. After no more

HTTP servers were active, every three minutes a new server would be turned on until all

servers are on. This benchmark was run in both intra-zone and inter-zone setups.

Figure 8 shows the results for the convergence benchmark in the intra-zone setup. For

the first 180 second period, all four servers were up and all of them feature the same

throughput. Similarly equal per-back-end throughput can be observed in the 180-360

1

51

101

151

201

251

301

351

401

451

501

1 4 16 64 256 1024 4096 16384 65536

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
se

co
n

d

Load (Requests/second)

us-east-1a

us-east-1c

us-east-1d

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

second (3 servers), 360-480 second (2 servers), and 480-720 second (1 server) intervals.

During the 720-900 sec interval none of the servers were up. After that the 4 servers

were gradually turned on one by one at 180 second intervals.

We observed that ELB was able to determine back-end health quickly and route traffic

accordingly. There is no significant difference between the per-server traffic. In fact, ELB

was able to detect unhealthy servers within five seconds, and start redistributing traffic.

In intra-zone setups, ELB quickly detects back-end health and converges to fairness.

Figure 8: Result of convergence testing in intra-zone setup

However, in inter-zone setup, the result is quite different as shown in Figure 9. While

ELB detects the back-end health as quickly as intra-zone setups, it does not converge to

a fair distribution, as partially anticipated by the results depicted above in Figure 7.

0

50

100

150

200

250

300

0 180 360 540 720 900 1080 1260 1440

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
S

e
co

n
d

Test Time (Seconds)

Server 1

Server 2

Server 3

Server 4

C l o u d B e n c h m a r k s : A m a z o n E l a s t i c L o a d B a l a n c i n g (E L B)

Figure 9: Result of convergence testing in inter-zone setup

4. Conclusions

To provide fault tolerance and automatic scaling, ELB incurs both cost and performance

penalties in intra- and inter-zone setups. In inter-zone setups, this penalty seems to be

more severe. The penalty is naturally directly proportional to the loads.

Overall, ELB seems to live up to its expectations mostly in intra-zone settings where it

seems to deliver agility and fairness. This does not hold for inter-zone settings.

0

50

100

150

200

250

300

350

0 180 360 540 720 900 1080

H
T

T
P

 C
o

n
n

e
ct

io
n

s/
se

co
n

d

Time(Seconds)

Server1

Server2

Server3

