

Cloud Performance Benchmark Series
Amazon Elastic Block Store (EBS)
Amazon Simple Storage Service (S3)
Amazon EC2 Instance Local Storage

Shripad J Nadgowda
Radu Sion

ver. 0.8

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 2

1. Overview
This document describes a benchmark of Amazon’s Elastic Block Store (EBS) and Simple
Storage Service (S3) mechanisms. EBS volumes provide traditional network attached
disk storage for EC2 instances. The Simple Storage Service (S3) is primarily designed for
easy-to-use web-scale computing and provides REST/SOAP access interfaces to
manipulate data “buckets” (up to 5GBytes) uniquely identified by user-generated keys.
Additionally, each Amazon EC2 compute unit (“EC2 instance”) comes with default local
disk storage. The benchmarking framework used here was Filebench that allows the
simulation of different application workloads on file systems and disks. Experiments
were conducted repeatedly at different times of the day to capture the variance in
performance throughout.

2. Setup
The Amazon Elastic Block Store (EBS) is a service that allows EC2 users to attach block
storage volumes to EC2 instances. These volumes are network attached off-instance
storage. As a result, traffic to these volumes is metered towards that instance’s overall
network bandwidth. The experimental setup for the EBS service included: (i) an off-line
creation of EBS volumes, (ii) at-runtime attachment of the volumes to EC2 instances
hosted within the same availability zones (to minimize inter-zone network-related
issues), (iii) formatting of the mounted volume with the ext3 file system, (iv) mounting
of the volume as a filesystem within a standard EC2 Redhat OS instance, (v) subsequent
benchmarking thereof.
The Amazon Simple Storage Service (S3) was primarily designed to provide a simple web
interface for storing and retrieving data organized in “buckets” uniquely identified by
user-generated keys. Different access mechanisms to S3 exist. To eliminate complexity-
induced variance, we decided to deploy a clean and simple command line access
mechanism allowing for bucket creation and subsequent access (the GNU s3tools’
s3cmd client). Separate scripting was deployed to harness s3cmd and record results.
Finally, every EC2 instance, when created, comes with default local “disk” storage. Its
capacity varies according to the instance type (i.e., small, medium, large). This storage is
immediately available as a pre-mounted ext3 file system on most UNIX variants AMIs.
This storage was also benchmarked.
To capture variance in performance throughout, for all three types of storage,
experiments were conducted repeatedly at different times of day.
The in-cloud EC2 instances chosen as benchmarking client platforms were of type High-
CPU Medium (c1.medium) with 5 ECUs, 2 virtual CPU cores and 1.7GB memory, running
the ubuntu-9.04-jaunty-base-20100319 AMI. Similarly, for benchmarking S3, High-CPU
Medium (c1.medium) AMIs with 5 ECUs were chosen as client platforms.

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 3

2.1. The Filebench suite
FileBench (originally by Sun Microsystems) is a “configurable file level workload
synthesis and measurement framework. It facilitates easy reproduction of complex
applications which are pre-defined by workload descriptions” [1]. The following four
profiles were used for generating standard workloads:
a) seqread. A workload profile which benchmarks sequential file reads. To eliminate

unwanted interference, caching disabled, file sizes were set to be larger than the
available host machine RAM (e.g., 3-5 GB), iosize was set to 1 MB and the workload
was executed single threaded at different 10-15 minute time intervals.

b) seqwrite. This profile generates a workload of sequential file writes. The size of file
writes was set to 1 MB, caching was disabled and the sync flag was enabled. A single
thread was deployed to eliminate unwanted scheduling-related interference.

c) rread. This profile benchmarks random file reads. It was run on 3-5 GB files, with
caching disabled, iosize 2K, single threaded, at multiple times throughout. Each run
consisted of a total of 128MB read data.

d) rwrite. Similarly, this profile benchmarks random file writes. File sizes were set in the
range 3-5 GB, writes were synchronized, and caching was disabled.

The execution of each above profile shows different behavior of the block storage
device in terms of Total number of operations, Throughput (operations/second),
bandwidth (megabytes/seconds) and latency (milliseconds). Graphs below illustrate
these results for EC2 local disk storage and EC2 attached EBS. Since Amazon S3’s object
store data model is different, the S3 performance results are shown separately.

2.2. Amazon CloudWatch
We thought it would be interesting to observe our experiments also using Amazon’s
internal monitoring service, CloudWatch. Using this service, one can monitor Amazon
EC2 instances, EBS volumes, RDS database instances. However, since the monitoring is
continuous in nature and only aggregated results are provided, it is difficult to use it to
compute discrete results for a given workload simulation. None the less, we have
captured different aspects of EC2 instance behavior and EBS volume characteristics over
the period of performing the filebench experiments. These results provided additional
insights, e.g., monitoring the network traffic for the EC2 client instances illustrated the
associated network overhead of storage-related operations generated.

3. Results

3.1. Block Storage

To visualize the impact of time of day on results, each workload profile was run at
four different times (12 AM, 6AM, 12 PM, 6PM). The results are illustrated below.

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 4

As expected (Figure 1), read bandwidth for the EC2 local block storage varies quite
significantly throughout. Midnight seems to yield almost 80% more sequential read
bandwidth than 6 PM and 43% more than during mid-day values. This is likely the
result of multi-tenancy. Interestingly however, EBS read volume bandwidth was
more or less constant throughout the day. This suggests a network-related cap.

Figure 1: Sequential Read on Block Storage

Similarly the perceived bandwidth for sequential writes on EC2 local storage at
midnight is almost double than in the evening. Random reads and writes yield almost
the same bandwidth throughout the day. This also suggests a network-related cap.

0

20

40

60

80

100

12:00 AM 6:00 AM 12:00 PM 6:00 PM

Re
ad

 B
an

dw
id

th
 (M

B/
s)

EC2 Local

EBS Attached EC2

Time of Day

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 5

Figure 2: Sequential Write on Block Storage

Figure 3: Random Read on Block Storage

0

20

40

60

80

12:00 AM 6:00 AM 12:00 PM 6:00 PM

W
rit

e
Ba

nd
w

id
th

 (M
B/

S) EC2 Local

EBS Attached EC2

Time of Day

Sequential Write

0

0.2

0.4

0.6

0.8

1

12:00 AM 6:00 AM 12:00 PM 6:00 PM

Re
ad

 B
an

dw
id

th
 (M

B/
S) EC2 Local

EBS Attached EC2

Time of Day

Random Read

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 6

Figure 4: Random Write on Block Storage

Monitoring EC2 instances and EBS volumes with Amazon CloudWatch served a
validation purpose. Figures 5-8 show monitoring results for one set of experiments
carried out around noon-time. In all figures, the x-axis represents time.

 Figure 5: Disk Reads (bytes) Figure 6: Disk Writes (bytes)

Figure 5 shows the EC2 disk storage monitoring results during sequential and random
read profile runs. It displays the average of number of bytes read. The peaks correspond
to data read during sequential and random read runs respectively. Note that these
numbers represent aggregates. It can be seen that, for same filesize, the random read

0

0.1

0.2

0.3

0.4

12:00 AM 6:00 AM 12:00 PM 6:00 PM

W
rit

e
Ba

nd
w

id
th

 (M
b/

S)
EC2 Local

EBS Attached EC2

Random Write

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 7

profile generated much more traffic than the sequential reads. Figure 6 shows uniform
behavior during the sequential data writes (first peak in the graph), followed by the
variable data write operations during the random writes.

 Figure 7: EBS Read throughput (ops/s) Figure 8: EBS Write throughput (ops/s)

Figures 7 and 8 show aggregated EBS throughputs (ops/sec) during the (sequential and
random) read and write phases. Figure 8 suggests that write throughput for random
writes is higher when compared to sequential writes. On the other hand, a write
throughput peak was observed for sequential writes on EBS.

Figure 9: Write Latency for Amazon Block storage

0

5000

10000

15000

20000

25000

30000

6:00 AM 12.00
Noon

6.00 PM 12 Mid-
night

Ti
m

e
in

M

ic
ro

se
co

nd
s EC2-Local

EC2-EBS

Latency

Time of day

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 8

The latency for the Amazon Block Storage (Local and EBS-attached) was computed by
issuing synchronous write requests of 4096 bytes of data from within a custom-written
application. Synchronous I/O is achieved by deploying the O_SYNC flag in each write call.
The flag aims to minimize the effect of caching. Read latencies cannot be benchmarked
properly as it is not possible to bypass the inherent caching infrastructure. Results are
illustrated in Figure 9.

As can be seen, although the write latency for EC2-Local storage is almost constant
throghout the day, there is a noticable variation in the latency for EC2-attached EBS
storage. This is likely due to the variation in network bandwidth as EBS is attached over
the network to the EC2 instance.

3.2. Amazon S3
The Amazon Simple Storage Service (S3) was primarily designed to provide a simple web
interface for storing and retrieving data organized in “buckets” uniquely identified by
user-generated keys. Benchmarks were performed from two different vantage points:
Stony Brook and an instance within the same EC2 region. Results are shown in Figures 9
and 10. An average throughput of about 15.5 MB/sec was observed from within EC2. On
the other hand, the Stony Brook vantage point yielded only 1.12 MB/sec. – which
suggests a network-related cap.

Figure 10: Data bandwidth on Amazon S3 (Stony Brook vantage point)

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 9

Figure 11: Data bandwidth on Amazon S3 (EC2 vantage point)

The latency of PUT and GET requests of object-storage on Amazon S3 was also
computed for 4096 bytes object data. Results are depicted in Figure 12. As can be seen
again the variation in the observed latency for GET and PUT requests on Amazon S3 is
due to variation in network latencies, especially when considering the numbers
depicting the local machine - S3 connection.

Figure 12: Write/Read Latency for Amazon S3

0

5

10

15

20

12:00 AM 6:00 AM 12:00 PM 6:00 PM

Da
ta

 B
an

dw
ith

 M
b/

s
Data Bandwith

Amazon Simple Storage Service (S3)

Time of Day

0

200000

400000

600000

800000

1000000

6:00 AM 12.00
Noon

6.00 PM 12 Mid-
night

Ti
m

e
in

 M
ic

ro
se

co
nd

s EC2-S3 PUT

EC2-S3 GET

Time of day

Latency

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 10

3.3. Cost

 Figure 12: Monthly price of EBS Volume (amazon.com)

Figure 13: Amazon S3 Store / GB (amazon.com)

C l o u d B e n c h m a r k s : A m a z o n S t o r a g e S e r v i c e s | 11

Computing the pricing model for cloud storage offerings in general is necessarily an
application specific endeavor and subject to various factors including workload, sizes,
usage, number of transactions, add-on services etc.

Nevertheless, we thought it would be interesting to compute the cost of storing bits
with Amazon. We considered a file system of 500GBs and an average workload of 150
I/O operations per second. Given the current pricing scheme, we have the following
yearly numbers for EBS:
Cost of I/O requests: ~2.6 million seconds/month * 12 * 150 I/O per second *$ 0.10 per
million I/O = $468. Cost of EBS volume: 500 GB * $0.10/month *12 = $600. The total
storage cost: $1068/year. Per-bit this comes down to 248 US picocents (1 picocent = 10-

14 USD). Cost of only storing the data without I/O: 140 picocents. This is surprisingly
close to our predicted numbers in [2] where we had shown that the yearly cost of
powering up and storing a bit would hover around 100 picocents.
Similarly, for the Amazon S3 object store, the cost of storing a bit for one year is shown
below. Naturally, with increasing storage capacities better deals can be had. We suspect
that the 50 picocents cost for capacities over 5000TBytes is possible only while taking
into account an expected relatively low utilization factor (e.g., < 50%).

Figure 14: Per-bit yearly costs for Amazon S3 storage

[1] Filebench, http://www.solarisinternals.com/wiki/index.php/FileBench
[2] Yao Chen, Radu Sion, "On Securing Untrusted Clouds with Cryptography", in the ACM
Workshop on Privacy in the Electronic Society WPES 2010, at CCS

0

50

100

150

200

250

50 TB 100 TB 500 TB 1000 TB 5000 TB > 5000
TB

St
or

ag
e

Co
st

 (
pi

co
ce

nt
)

Amazon S3 bit/year cost

Standard Storage

Reduced Redundancy Storage

