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Location information is of essential importance in sensor networks deployed for generating
location-specific event reports. When such networks operate in hostile environments, it becomes
imperative to guarantee the correctness of event location claims. In this paper we address the prob-
lem of assessing location claims of un-trusted (potentially compromised) nodes. The mechanisms
introduced here prevent a compromised node from generating illicit event reports for locations
other than its own. This is important because by compromising “easy target” sensors (say, sen-
sors on the perimeter of the field that’s easier to access), the adversary should not be able to
impact data flows associated with other (“premium target”) regions of the network.

To achieve this goal, in a process we call location certification, data routed through the network
is “tagged” by participating nodes with “belief” ratings, collaboratively assessing the probability
that the claimed source location is indeed correct. The effectiveness of our solution relies on
the joint knowledge of participating nodes to assess the truthfulness of claimed locations. By
collaboratively generating and propagating a set of “belief” ratings with transmitted data and
event reports, the network allows authorized parties (e.g. final data sinks) to evaluate a metric
of trust for the claimed location of such reports. Belief ratings are derived from a data model of
observed past routing activity. The solution is shown to feature a strong ability to detect false
location claims and compromised nodes. For example, incorrect claims as small as 2 hops (from
the actual location) are detected with over 90% accuracy.

Finally, these new location certification mechanisms can be deployed in tandem with traditional
secure localization, yet do not require it, and, in a sense, can serve to minimize the need thereof.

Categories and Subject Descriptors: C.2.2 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS

General Terms: Algorithms, Systems

Additional Key Words and Phrases: Sensor Networks, Security, Location Certification

1. INTRODUCTION

Node location information plays a fundamental role in ad-hoc networks. Specifi-
cally, in sensor networks, it is critical that the reported location of all nodes are

Corresponding Author’s address: R. Sion, Computer Science, Stony Brook University, Stony
Brook, NY 11794. In part supported by the NSF (IIS-0803197, CNS-0627554,0716608,0708025),
IBM, Xerox and CEWIT.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

Page 11 of 57 Transactions on Sensor Networks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

2 · Gao, Sion, Lederer

accurate, to ensure a point of reference for location-specific applications. Thus, a
robust network must require such information be un-compromised, lest a few faulty
or malicious nodes will have a deleterious effect on the entire network.

Existing work investigates secure localization [Lazos and Poovendran 2004], i.e.,
how nodes determine their own location in a hostile environment, and secure lo-
cation verification [Sastry et al. 2003; Waters and Felten 2003], determining the
location of a node in the face of liars. Typically these protocols involve special
anchor nodes, or nodes whose location is not corruptible. Based on the distance
to these nodes, the location of the remaining nodes is determined with certain as-
surances by deploying distance-measuring RF or ultrasound-based mechanisms and
performing multi-way handshakes under synchronized clocks assumptions. These
methods are designed to be used when the network is first deployed, to establish
the location of all nodes during its initial setup.

However, when operating in hostile environments, it is essential to secure location
information claims at runtime, in the presence of compromised nodes, that could
falsify location claims and inject incorrect event reports into the information stream.
False location information may lead the data sink to take action in a location where
none is warranted, and vice-versa, not take action in the area where a response is
necessary.

We introduce a protocol that validates the truthfulness of location information
associated with event reports. The protocol relies on the collaborative interaction
of the network nodes to find compromised parties. Since each node is an active
participant in the network and spends a substantial amount of time and resources
relaying messages for others, it automatically has some knowledge of the activity
within the network. This knowledge can be put to good use in spotting anomalous
behavior. The workload and detection ability is thus distributed across the network,
to avoid a single point of failure and gracefully degrade with increasing number of
compromised nodes.

To achieve this purpose, at an overview level, nodes in the network (compactly)
record summaries of routing paths taken by packets through the network. Upon
receiving a packet, nodes examine whether their route matches a historically ex-
pected behavior by packets from the same claimed location. A belief about the
correctness of this location claim of this packet is then created and propagated to
the data sink, either as part of this packet or later on, in an out of band fashion.
The attached beliefs will be used by the authorized packet evaluators PEs (sinks
or authorized intermediate relay nodes) to certify the truthfulness of the packets’
location information.

We show by simulations that the belief rating has a strong correlation with the
deviation of the source’s real location from its claimed location. Thus if a node lies
about its location, the farther away it claims to be from its real location, the more
likely the packets will be identified.

The memory limitations of sensor nodes require light-weight protocols both in
terms of memory and power usage. Accordingly, we developed a path metric and a
compact way to express path trajectories, by using locality-sensitive hashing [Indyk
and Motwani 1998]. This metric captures the fact that packets from sources with
incorrectly claimed locations are likely to have path trajectories deviating from
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previously observed traffic paths.
The key advantage of our solution lies in its collaborative nature and in the

involvement of the network in a community of trust. A single malicious or faulty
node is unlikely to take over the entire network and cause significant damage. To
better understand the challenge of the problem and the rationale of our approach,
we also outline the following alternative straight-forward schemes.

—Immediate neighbor detection. An immediate neighbor (p) of the malicious
node could detect that it is not in the region it claims, because this region is out
of the communication range of p. This scheme is vulnerable to multiple (two)
adversarial colluding nodes; the adversary directly communicating with p would
not actually be lying about its location. Moreover, in general the problem is
more significant, because an adversary can “create” a whole set of fake nodes
b1, b2, · · · , bk where the distance between any bi and bj is within the communi-
cation radius R, and the distance between bk and the true node is more than R.
Even by looking at the distances between all the nodes on the path and ensuring
that the distance between any two consecutive nodes is short, an honest node
cannot determine if there is a node lying about its location.

—Distance from straight line trajectory. A simple idea for a scenario where
the sensor nodes are densely and evenly distributed throughout the region is to
compute how far the current node lies off the straight line trajectory between
the source node and the sink. Based on how far away from the direct path this
node lies should the belief rating be made. However, this mechanism would fail
in the case of irregularities in the network. Specifically, when there are holes
in the network, or when routing paths do not follow straight line paths, a node
may well be placed far from the straight line from source to destination — also
observed in real experiments [Zhou et al. 2004]. As shown later, our path metric
is adaptive to these variations in traffic patterns. We capture the case when a
packet follows a path not “similar” to the expected ones, in which case the packet
will be tagged with a poor belief rating.

Secure Localization vs. Location Certification Finally, it is important to
outline the difference between secure location certification and traditional secure
localization, because, apparently, by using secure localization in an initial stage,
nodes could propagate location information securely to the data sink and then
simply authenticate each future even reports. The sink will associate these reports
with the known previously received location information of each node.

The above apparent localization-based solution in fact illustrates a great exam-
ple on why location certification is needed. Indeed, if we assume secure localization
happened, now if a node is compromised (including its shared key with the sink),
the adversary (e.g., battle-field enemy) can simply move the sensor to a less dan-
gerous (for the adversary – e.g., less monitored) location and now inject false event
reports about the node’s assumed (original) location into the network. Location
certification can prevent this.

Moreover, often secure localization is not an option due to both communication
costs and hardware/beacon requirements and as such is not a prerequisite of our
mechanisms which, in a sense can serve as a poor man’s replacement thereof.

Naturally, certain nodes will be required to have the ability to locate themselves
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securely in one way or another, yet overall, most of the network nodes are not
assumed to be aware of their location. Similarly, the sink is NOT assumed or
required to know individual locations.

We believe this is essential in order to allow the deployment of ad-hoc networks
composed of extremely cheap hardware with minimal localization ability for indi-
vidual nodes. Moreover, many of the nodes in the network could be sporadic and/or
routing-only and not participate in the protocol.

Location certification can involve all nodes in collaboratively assessing location
claims without necessarily having the ability to do localization.

The paper is structured as follows. We introduce the sensor model and the adver-
sary model in section 2. In section 3 we discuss collaborative location certification,
and the belief rating generation and propagation. Both the metric and the detec-
tion ability are evaluated by simulations in section 7. In section 8 we overview
related work on location certification and secure localization algorithms.

2. MODEL

In this section we discuss the considered adversarial and deployment models.

2.1 Adversary

Of concern here is a malicious, powerful adversary with strong incentives to capture
and compromise sensors for the purpose of altering the sensor data flow, e.g., by
inserting false data and event reports and eventually influencing decision making
process at the base station. For such an adversary, pure denial of service (DOS)
attacks that aim to disable sensors and parts of the network are only of marginal in-
terest and will not be considered here. For DOS attacks, [Wood and Stankovic 2002;
Cheung et al. 2005] offer techniques to address these issues. Multi-path forwarding
[Karlof and Wagner 2003] alleviates the problem of malicious relay nodes dropping
legitimate reports. Also, by using a cache to store the signatures of recently for-
warded reports we can prevent against the same packet from being replayed [Ye
et al. 2003; Intanagonwiwat et al. 2000]. Finally, by encrypting the event reports
and any associated data with keys shared with data sinks, confidentiality and data
integrity can be achieved.

In particular, the mechanisms introduced here provide correctness assurances of
node location claims in the process of event reporting. They prevent a compro-
mised node from generating illicit event reports for locations other than its own.
This is important because by compromising “easy target” sensors (say, sensors on
the perimeter of the field that’s easier to access), the adversary should not be able
to impact data flows associated with other (“premium target”) regions of the net-
work. To achieve this goal, data routed through the network will be “tagged” by
participating nodes with “belief” ratings, collaboratively assessing the probability
that the claimed source location is indeed correct. We call this process location

certification.
To circumvent location certification (e.g., for the purpose of injecting fake event

reports referencing remote, out of reach locations) an adversary could attempt
to: (i) favorably modify certificates for its own fake data (e.g., by altering the
associated belief ratings), or (ii) unfavorably alter certificates of legitimate traffic.
The probability of success of such attempts is naturally related to the density of
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compromised nodes in the network. The ability of success need to adapt gracefully
to the density of compromised nodes. Ideally, the solution should operate even in
the presence of a large number of adversarial nodes.

For illustration purposes, we first consider an adversary that only attempts to
maliciously claim a different location in its event reports (but does not maliciously
alter belief ratings of other packets it routes). We then discuss additional security
issues in section 4.

2.2 Deployment. Routing.

We focus in this paper primarily on monitoring networks in which the sensors collect
information of interest and send data/event reports to a base station (data sink)
for post-processing and analysis.

To this end we assume the existence of a training period (e.g., immediately after
deployment) in which the network is assumed free from any adversarial presence.
Since our location certification procedure is based on using past history of network
routes, we must assume that the original history is initially “clean”. The better the
history data is in terms of “cleanliness”, the better the location certification will
perform.

Since history data is used to predict future network behavior, we assume that
the network is to some degree consistent in its routing behavior. If strong routing
patterns are exhibited, i.e., all packets from the same source are typically routed
along similar paths, then location certification will perform well. If the legitimate
routing behavior is completely random (say packets from the same source take
arbitrary routing paths) then our protocol won’t work well. Naturally, geometric
routing maintains a high degree of consistency in routing patterns, so we generally
will speak in terms of a geometric routing protocol, and this is the routing scheme
used in our simulations. However, geometric routing is not a prerequisite for the
protocol.

Finally, we note that in the most general case (i.e., in the absence of trusted
GPS beacons and location information for all nodes – we do not require secure
localization) our mechanisms’ accuracy/resolution is a direct function of network
node density. Specifically, in a network composed of very few nodes communicating
over long distances, a node maliciously claiming the location of a direct (network)
neighbor (possibly hundreds of feet away) and then routing the packet correctly
will not be detected by our or any existing mechanisms. In our case this is because
the detection resolution is directly related to the number of nodes on the route path
for the suspicious event report (and thus on average to the network density).

3. COLLABORATIVE LOCATION CERTIFICATION

In this section we detail the main components of the location certification protocol.

3.1 Solution Overview

At an overview level, the proposed solution unfolds as follows. Independent of our
mechanisms, traditional network secure localization protocols [Lazos and Pooven-
dran 2004] will allow a subset of the sensors to acquire location information that
is to be later used in event reports. Existing research achieves this by assuming a
largely un-compromised network for a short amount of time after deployment. We

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 15 of 57 Transactions on Sensor Networks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

6 · Gao, Sion, Lederer

note that the existence of localization is not a pre-requisite of our protocol, which
can co-exist and operate in parallel with it.

Once the network becomes fully operational, sensors will start generating event
reports associated with their respective location. A compromised sensor could then
attempt to generate illicit event reports for locations other than its own. To defeat
such an adversary, nodes along the path from the source to destination will attach
“belief” ratings to passing data packets, quantifying the correctness probability of
the claimed source locations. Informally, beliefs are a function of observed past
traffic patterns in conjunction with the claimed source location. Upon receiving
packets with routing information deviating from expected traffic patterns, nodes
will have the opportunity to propagate negative belief ratings associated with these
packets. The negative beliefs reflect the appearance of an anomaly in the routing
pattern.

Thus this scheme is able to detect both the case in which the routing pattern
is altered by an adversary (a compromised node lies about its location, or other
routing attacks such as wormhole attacks [Papadimitratos and Haas 2002; Hu et al.
2003; Sanzgiri et al. 2002]) and the case of node failures — a large fraction of
nodes run out of battery power or get physically destroyed by adversaries causing
significant routing pattern changes. A node which rarely participated in the data
collection operation will get a low confidence, which is reasonable as the network
collectively has little or no information to decide whether it is a legitimate node.

We re-iterate that this solution assumes the network is initially free from adver-

saries for a short period of time. If a large number of compromised nodes is present
at the start and they are able to generate arbitrary traffic patterns then collabora-
tive certification will be less effective. In a typical deployment there is often a short
period of time which is more than enough for our scheme to collect enough history
traffic data. With this limitation in mind, we believe that the novelty in our scheme
lies in the compact and efficient way of summarizing the history traffic pattern and
the ability of using the history to verify the correctness of future packets.

3.2 Strawman’s Book-keeping.

Before proceeding, to illustrate, we first discuss an extremely simple book-keeping
mechanism, the understanding of which will motivate our final solution. As part
of the routing protocol, each sensor will maintain a history and normalized count
of each previously seen source-destination pair for routed packets. New incom-
ing packets from rarely seen sources will then be considered more suspicious and
associated with a low rating.

While this scheme is extremely simple and scalable, it presents certain limita-
tions, in particular in its ability to detect deviations in full routes (as opposed
to endpoints). If a node does route information between the claimed origin and
destination, then the packet from an adversary claiming to be from a different lo-
cation will be considered fair game. To achieve a better detection accuracy, more
information about information flow is required in the belief rating construction.

3.3 Inter-Path Distance Metric

Accordingly, we explore first how to compare packet routes efficiently in a meaning-
ful way. Based on the sequence of nodes a packet has visited, we derive a trajectory
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of a packet by the piece-wise linear curve connecting the intermediate nodes in their
visited order.

We define a distance metric that measures how far two trajectories are. The
distance is designed such that fake claimed locations for packets will result in large
distances between real and expected trajectories. There are many generic ways to
measure the distance between two curves in space, such as Hausdorff distance and
Frechét distance. Here we design a measure well suited to our problem at hand.

p
′
kP ′

Pp1

p
′
1

pk

Fig. 1. The distance metric between two paths P,P ′. In this figure we adopt a uniform
parametrization and the samples are placed uniformly on the paths.

Given a trajectory P (a curve in the plane), we adopt a parametrization (e.g.,
uniform, but other parametrizations may also be used, as will be shown later)
and take k samples {p1, p2, · · · , pk}, on P . We define the distance between two

paths P ,P ′ as π(P ,P ′) =
∑k

i=1 ||pi − p′i||
2, the sum of squared distance between

corresponding sample points. From a different viewpoint if a path P is considered
a point in 2k dimensional Euclidean space p = (p1, p2, · · · , pk) (each point pi is
a point on 2D), the distance between two paths is the squared ℓ2 norm of their
corresponding representative 2k-dim points.

In our scenario the number of samples naturally corresponds to the sensor nodes
on a path. A path of k − 1 hops maps to a 2k-dimensional point. In the following
we will see this observation become very useful in the design of a succinct data
structure that summarizes the relative distances of a set of paths by a set of points
on a 1-dimensional line.

Essentially each node will keep a compact structure (to be explained in section
5) that summarizes the trajectories of the packets that go through it. Once a
new packet arrives, the current trajectory is compared against past trajectories of
packets from the same source or nearby. See Figure 2 for an example where an
adversarial node s sends a message that goes through a node u, but claims it is at
location s′. The path taken by the packet, P , is different from the path it should
have taken if it is indeed generated from a node at s′ (shown as the dashed path
P ′). This is exactly the type of discrepancies captured by our path metric. We
use a parametrization scheme that samples uniformly in each hop. If a path has m
hops, then each hop is sampled uniformly k times to yield a total of m× k sample
points.

3.4 Locality Sensitive Hashing

Yet, the full path history is too large for the packet to carry and for sensor nodes to
keep. Consequently, we adopt locality sensitive hashing [Indyk and Motwani 1998]
a mechanism perfectly suited to compress such data and represent each path by a
single value. The distance between two paths then becomes the distance between
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P ′

s

s
′

uP

Fig. 2. The real path P taken by a packet from s is different from the path P ′ it should have
taken if it were generated from the claimed location s′.

their compressed values. In general, locality sensitive hashing takes points in high
dimensional space and maps them to 1D such that the Euclidean distances between
them are roughly preserved. Recall that each path can be considered as a point in
2k-dimensional space, which is then hashed to a point in 1D such that the distance
between any two paths is correlated to the distance between their corresponding
1D points.

Locality-sensitive hashing makes use of the properties of stable distributions. A
stable distribution [Datar et al. 2004] is a distribution where the random variable
∑

i viXi has the same distribution as the variable (
∑

i |vi|
p
)1/pX , where X1 . . . Xn

are i.i.d. variables from that distribution. It is known that Gaussian distribution
is stable for ℓ2 norm. This means that if we represent a path P in our network by
a vector in 2k-dimensional space v = (p1, p2, · · · , pk) and generate a random vec-
tor a (with each element chosen uniformly randomly from a Gaussian distribution
σ(0, 1)), of the same dimension, then taking the dot product of the two vectors,
a · v, results in a scalar distributed as ||v||2X , where || · ||2 is the ℓ2 norm, and
X is a random variable with Gaussian distribution σ(0, 1). It follows that for two
vectors (v1, v2) the distance between their hash values |a ·v1−a ·v2| is distributed as
||v1−v2||2X where X is a random variable of a Gaussian distribution. Therefore, if
we have a vector vi, which represents a path in our network, we can generate a scalar
value from it (by taking the dot product with a) that still maintains the property
that its distance from another scalar generated by another vector v2 is correlated to
the original “distance” between v1 and v2 as we previously defined. A hash function
that uses random variables of a stable distribution to map high-dimensional vectors
to 1D points satisfies the above definition of locality sensitivity.

In our case the routing paths have different lengths and thus map to vectors of
different lengths. Thus we assume that the random vector a is one of potentially
infinite length and is generated by a pseudo-random function known to all the nodes
in the network. Upon receiving a packet with observed trajectory vector v, each
sensor will use locality sensitive hashing to store only the hashed value h(v) = a · v
together with the location where this packet was generated. For a new packet that
claims to be from the same region, the hashed value of the new packet is compared
with the hashed values in the past history. A belief rating directly proportional to
the difference of these two values is then generated.

When a packet is routed, the routing path is revealed gradually. The hash value
of the path is then updated. Essentially a packet received by u only carries k (the
number of hops of the path so far), the position of the last node v visited and the
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hash value computed by v. u will then update the packet with its own location and
the new hash. The new hash value is computed as the sum of the old hash plus
the value (vx, vy) · (a2k, a2k+2), where (ux, uy) is the location of v, and ai is the
ith element of the random vector a. As the locality sensitive hash is essentially the
dot product of the location vector with the random vector, the update to the old
hash yields the correct hash value, while significantly reducing the communication
overhead.

In section 7.1 we show how the use of locality sensitive hashing in the design of
belief ratings results in a strong correlation between the distance a node is from a
claimed location and the resulting belief.

3.5 Belief Generation

By the property of locality sensitive hashing, packets taking paths similar or iden-
tical to each other tend to cluster together on the real line, while packets coming
from unknown regions or following a highly irregular path map to different points.
To express a correctness belief about the claimed location of incoming packets, their
associated hash values are thus compared with the expected value ranges of nodes
originating from the same region. We explain in section 5 how the hash values of
different packets are stored and compared, and how we group hash values based on
the path’s origin.

Note that when the network is first deployed nodes do not have any history
about the network. We allow the beliefs to evolve gradually over the lifetime of
the network by having the belief rating be comprised of 2 values: one is the actual
belief rating, the second is the belief confidence. Intuitively, the rating captures how
well a new packet matches previous history data, while the confidence measures how
much history data a node has at its disposal. If the confidence is low than the belief
value is less useful. Initially, in a new network, the confidence values will be low,
and the beliefs ratings will be of limited value. But as nodes accumulate history,
belief ratings will be given with higher confidence. Note that if a new node comes
online in a network where nodes have had time to assess sufficient history data
then it will be given a rating with high confidence, good or bad depending on how
well it conforms to past traffic patterns. The interplay between belief values and
confidence values is complex and actual thresholds of what is considered a “good”
rating or “bad” rating would depend on the particular network and/or application.
These can be adjusted depending on the circumstances. The data structure we use
captures both components of the belief rating. See Section 5.

3.6 Aggregating Ratings and Defeating Belief Skewing Attacks

We first note that malicious nodes can not arbitrarily skew belief ratings for col-
luders or other “good” nodes as the final report rating is an aggregate of all the
(encrypted and secured) ratings of the mostly trusted nodes routing the packet.
We have not elaborated on this aggregate because we believe this is a mostly
application-specific issue. Indeed numerous formulas can be deployed, from simple
linear combinations of all the individual nodes’ ratings (e.g., weighted averaging)
to complex Markov Model based mechanisms that account for node identity and
time, space locality to arrive at a trust probability.

For example, in the linear case (we used this in the experiments), if a majority of
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network nodes have been compromised, the rating could be weakened and malicious
en-route nodes will have increasing ability to impact the rating of each packet. Yet,
the good news is that the mechanism degrades gracefully and (it is easy to show
that) in a uniformly distributed network, the upper bound on the illicit impact in
the rating of any one event report is a linear function of the density of malicious
nodes.

We also note that the dynamic nature of the collaborative belief training requires
mechanisms of preventing malicious nodes from skewing belief ratings by repeatedly
sending incorrectly labeled event reports.

We will not detail this beyond our scope, as it can be naturally achieved during
the mitigation phase, once an alarm has been raised and a compromised node has
been detected due to its attached (low) rating. In that case, the data sink will
mark the compromised node as such and appropriately handle its further reports.
The data sink will also contact the network and blacklist the node. This is not
absolutely necessary – and the main reason for doing so is to prevent others to
route their messages through the compromised node. For efficiency, in an initial
phase, only the sensors on the path to the compromised node can be notified.

Note that the above defense will likely still allow an adversary to very slowly

“move” compromised nodes by sending numerous reports that will all be rated just
below the alarm-threshold (because the claimed location is close enough to the
original location for the compromised node).

To further defeat such behavior, report frequency can be factored in the genera-
tion and (more importantly) evaluation of beliefs: even if a negative rating is below
the alarm-raising threshold, if many such packets suddenly appear – the thresh-
old could be further decreased temporarily, possibly only for the secret credential
(encryption key) corresponding to the suspected compromised node.

Alternately if such adaptive sink-driven action is not possible (power and effi-
ciency constraints) or desirable, another straightforward solution to this issue is
to not alter the internal nodes’ certification information (in other words to not
re-train) after a certain period in time, or associate different weights to knowledge
acquired in different segments of time/space depending on their associated network
vulnerability exposure levels.

4. SECURITY

We now describe how we prevent one or more colluding adversaries from tamper-
ing with the belief ratings or hash values of packets passing through. We want to
ensure that (i) individual belief values are not tampered with in transit, (ii) pack-
ets containing incriminating ratings cannot be distinguished from other traffic by
routing nodes – to prevent adversaries from selectively targeting undesired ratings
that they happen to currently route, (iii) new fake belief values are not added to
bad-mouth a packet or improve its rating, and (iv) existing belief ratings are not
removed from packets.

4.1 Semantic Security

To ensure the above, we first require that each sensor be associated with a unique,
public identifier and with a secret, unique symmetric encryption key, known only
to a very small set of authorized, un-compromised parties such as the data sink
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or a few intermediary relays, called packet evaluators, PEs. This is a reasonable,
practical assumption to be found in existing research [C. amtepe and Yener 2005].

This key can then be used for communication between the sensor and the PEs.
Such communication however, we require to be deployed using any semantically
secure encryption cipher [Goldreich 2001] (e.g., any cipher running in CTR mode).
Semantic security is necessary to prevent an adversary of correlating encrypted
fields in the current packet with fields of previously seen ones (e.g., if they repre-
sent the same value). Our solution does not depend on the deployed encryption
mechanism. Symmetric key cryptography has been chosen over public key crypto,
due to the computation-limited platform assumed. While details are out of scope
here, we note that more powerful mechanisms can be devised using asymmetric
key primitives. Such mechanisms would allow optimized, in-network location claim
evaluation and packet filtering, effectively reducing overhead induced by compro-
mised traffic.

4.2 Secure Belief Propagation

Upon generating a belief b (composed of a rating and confidence, see section 3.5 and
hash for the current packet), a sensor i will encrypt it using its shared symmetric
key with the sink ki and append the result Eki

(b) to the packet. Requirements
(i) and (ii) above are naturally handled. To ensure (iii) and (iv) we propose to
use a cryptographic digest1 chain constructs. Specifically, upon propagating a new
belief b with the current packet, a sensor i will perform two operations. First it will
encrypt the belief as above Eki

(b). Second, it will update the packet’s digest chain
value c as follows:

cnew ← H(cold|H(b)),

where H is a cryptographic digest, and ‘|’ denotes concatenation. At the PEs end,
each packet’s digest chain can be reconstructed and verified upon decrypting all
beliefs. To selectively remove a rating from the packet, a malicious adversary is
faced with having to correctly reconstruct a new digest chain for the remaining
beliefs. This, however, will require the decryption of those beliefs (using secrets not
in the possession of the adversary). Thus (iii) and (iv) are handled. An adversary
can still attach a bad belief rating, i.e., bad-mouth a packet. But this is essentially
denial of service attack in which the relay adversary can simply drop the packet
from the data stream. As message digests over small amounts of data are extremely
fast, the induced overhead is minimal.

To summarize, a node receiving a packet will append an encrypted belief rating,
update the digest chain as mentioned above and deliver the packet to the next
hop. The way that nodes attach belief ratings can be adaptive to the network
scenario and desired detection ability. We now introduce two belief generation and

1We use “cryptographic digest” to denote a cryptographic hash function, so as to avoid any
confusion with the locality sensitive hash constructs. We note that the collision resistance of such
a hash function is not paramount here, given that the adversary would have a hard time finding
meaningful collisions within a few minutes (and for a large enough number of packets to become
meaningful), before the packet is due at the sink. We assume the hash function outputs 6 bytes.
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propagation methods.

Stochastic Propagation. An immediate and natural extension to the above
propagation mechanism is the use of a stochastic behavior reducing communica-
tion requirements while gracefully degrading security assurance levels. Specifically,
sensors express beliefs only with a certain probability ps ∈ (0, 1]. Upon receiving
an incoming packet, a node will uniform randomly decide whether to generate and
propagate its current belief. Naturally, ps will now determine the efficiency of the
solution; lower values will result in less beliefs propagated but also lower commu-
nication overhead. Nevertheless, this will not immediately result in a beneficial
environment for a malicious adversary, as there is a certain favorable asymmetry to
be considered. An adversary will not be able to determine which sensors decide to
express beliefs about a given packet. Statistically, over a larger number of packets,
even small values for ps will result in the detection of consistent malicious behavior.
This is validated through simulations.

It is important to note that stochastic propagation comes at the additional over-
head of having to inform the sink which nodes express what beliefs. Reasonably
powerful sinks however can infer this information at no additional cost by trying all
node keys on all received belief ratings and seeing which ones decrypt. On modern
commodity hardware ciphers run at speeds of hundreds of MBytes/second [Bevand
]. For the 300 MBytes+ RC4, for reports containing an average of 10 ratings in a
1000 node network, this would allow the sink to process over 3800 report/second
(which is likely much more than the network itself could generate sustainably energy
and network-wise).

Out-of-Band Propagation (OOBP). Probabilistic, semantically secure encryp-
tion was used to prevent adversaries from understanding and correlating beliefs
generated by the same party about different packets. Nevertheless, an adversary
can still selectively drop (a few) packets, just below the threshold of being detected
by traditional denial of service prevention algorithms [Wood and Stankovic 2002].
A simple solution can be deployed to detect and prevent this behavior.

Informally this solution proceeds as follows. Each sensor maintains a window W
of yet-to-be-propagated beliefs. The belief generated for a new incoming packet
will not be propagated as part of the current packet, but instead will be placed
in W and its place will be taken by another (older) belief from W . To maximize
network usage and probabilities of arrival, the replacement choice will need to be
performed considering such things as its age in the window, its packet priority (if
any), its type (e.g., bad beliefs should be propagated faster) etc. At the receiving
side, the PE will maintain a similar window for each incoming packet for which not
all expected (or a sufficient number of) beliefs have been received. In the event
of network delays or corruptions, the PE may decide to timeout while waiting and
accept or reject based on the currently received beliefs.

The benefits of such a belief propagation mechanism are multi-fold. To selec-
tively drop packets while remaining undetected, a malicious adversary would need
to eliminate all beliefs pertaining to these packets. The semantically secure na-
ture of encryption and the fact that they are propagated out of band, render this
a difficult problem. The adversary has little incentive to remove belief ratings
on a packet (i.e., attack (iv)) as those beliefs are not necessarily certifying this
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packet. Its hardness increases naturally with larger sizes of the window |W | – due
to increasing un-predictability of the belief propagation process. For |W | = 1,
the mechanism gracefully converges to the above described protocol. Moreover, as
the window size is node-specific it can be set dynamically per-sensor, considering
memory constraints.

We note that OOBP would also require the association of beliefs propagated in
the future with their corresponding event reports. This can be implemented at
additional cost, e.g., by adding a minimal (application specific) bit string uniquely
(amongst all currently queued event reports in all nodes) identifying the even report
and its source.

5. STORAGE

We now introduce the data structure used to store history data within each node,
namely a dynamic quadtree subdivision based on the amount of contained history
data — nodes with high densities of data will further subdivide to achieve finer
history “resolution”. We assume that each node knows the sensor deployment field
boundary. Each sensor p organizes the paths observed in a quadtree grouped by
the sources of the paths, to exploit their spatial correlation. Intuitively the paths
taken by packets from nearby sources passing through p should be similar. Thus
even if p sees a packet for the first time from node x, p can test the path against
paths in its history originated from the neighborhood of x.

In effect, this divides the area of the network into regions, and use the history of
each region to form beliefs on individual nodes within. The sensor field is recursively
divided into quadrants as needed. For each quad, we store the mean of all the hash
values of paths originating from that region and their standard deviation. The
partitioning of the quad is controlled by the standard deviation and the number of
hashed values inside. When the standard deviation is larger than a threshold, the
quad is further partitioned.

The standard deviation of the hash values inside a quad measures how similar
paths originating from a particular region are. Thus the standard deviation natu-
rally controls the granularity of the quadtree partitioning. We do not maintain the
individual hashed values inside each quad, but only store their mean µ and stan-
dard deviation σ. Specifically, suppose there are m hashed values x1, x2, · · · , xm

inside a quad, then

µm =
1

m

m
∑

i=1

xi, σm =

√

∑m
i=1(xi − µm)2

m− 1

This dramatically reduces the storage required, proportional to the diversity of past
traffic, relatively independent of the number of packets that go through p.

Whenever a new packet with trajectory v and old hash a arrives, the new hash
value h(v, a) is computed. The new packet is then compared with the mean µ and
standard deviation σ of the quad where the claimed source falls in. A belief rating
that the packet is from a source within that quad is computed as the probability
that h(v) is a sample from a Gaussian distribution with mean µ and variance σ. If
the belief rating is “good” (user defined), the hash value is included in the history
data. It is to be inserted into the appropriate quadtree node with the standard
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deviation and mean of that quad node updated. Note that the mean and standard
deviation can be updated without requiring the original hash values. Suppose the
new hashed value is xm+1. Then the mean is updated as

µm+1 ←
m · µm + xm+1

m + 1

and the standard deviation is updated as

σm+1 ←

√

1

m
[σ2

m(m− 1) + x2
m+1] + µ2

m − µ2
m+1

In the training phase of the protocol, the hash values are kept and the quadtree
node further sub-divides itself if its standard deviation becomes too large. After
the training phase the hash values are discarded and only the mean and standard
deviation of each quad are kept.

In the operating phase, usually, further subdivision of the quadtree are not al-
lowed, as packets may come from adversaries and the information kept in the history
will be polluted if we allow such updates.

If, however, updates are to happen in the future, assuming that the traffic pattern
legitimately change over time, the following mechanism is deployed: upon a quad is
subdivision, the original history (discarded values) is assumed uniformly distributed
in the quad. Basically, this is the best guess possible, without the detailed values.
Thus all the divided quads share the same mean and appropriately scaled standard
deviation. There will be inaccuracies introduced, however, as the traffic pattern is
changing anyway, the old values become less important in defining the new traffic
pattern. When new packets arrive the mean and standard deviation are further
updated accordingly.

As we alluded to in section 3.5, the quad size (i.e. depth in the tree) determines
the confidence of a belief rating. A large quad size usually means we have little
data from a particular region. Therefore, we have less confidence in the belief rating
we assign. Conversely, a small size means that we have more knowledge, and can
assign a belief with greater confidence.

In our implementation, the belief rating itself is the number of standard de-
viations a new hash value differs from the mean of hash values previously seen.
Typically, a hash value 4 standard deviations from the mean results in a very poor
rating. The confidence value we use is the depth of the quad node used in comput-
ing the belief. The deeper a node in the tree is the more fine-grained information
about the area in question we have, thus a higher confidence in our beliefs. Of
course, other strategies can be employed here.

To summarize, the data structure is a quadtree with each quad recording the
mean and standard deviation of the hashed values for a particular region of the
network. We do not keep the entire path observed in the history, not even the
hashed values. Once a new packet comes in, we compare it against the history,
generate a belief, and update the history.

6. OVERHEAD ANALYSIS

Communication. The number of belief ratings that is propagated with packets
is network specific, but in usual scenarios we estimate 5-6 such values (5-6 bytes
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total). Other protocol-related information each packet carries is the location of the
previous node on the path (2 bytes), the cryptographic digest used to protect the
belief ratings (6 bytes) and the hash value computed by the previous node on the
path (2 bytes). This would yield a total of about 15 bytes. Given that TinyOS
packets in modern applications range anywhere from 36 to 100 bytes [Aberer et al.
2007], this is certainly acceptable, especially in hostile deployment scenarios where
such assurances are required.

In practice we further reduce the overhead by attaching beliefs in a probabilis-
tic way. Only an adaptively small fraction of packets are randomly selected to
carry beliefs. Alternately, only a small fraction of relay nodes attach belief rat-
ings. Moreover, in a streaming application scenario, spanning multiple packets,
only the first (header) packet in a data stream will need to carry this additional
information—thus amortizing the overhead over the entire sequence.

Storage. The storage overhead is determined by the granularity of history traffic
patterns. As we do not explicitly store all the hashed values of packets that visit
a node, but rather only the mean and standard deviation of the values inside each
quad, this results in a limited overhead. The amount of data a particular node
stores is dependent on a its location within the network. A node near the center
might be involved with messages passing through from multiple directions, while
a node on the periphery will see data originating from only a few directions. This
impacts the degree to which a node is able to group hashes of similar areas together.

For example, a maximum depth of the quadtree of 4 proved sufficient in our
simulations to provide a partition of 1/256th of the network, a very detailed division
of the sensor field. For a node at the center of the network potentially a full quadtree
of depth 4 will be needed, with 44 = 256 leaf nodes. A node on the periphery with
only detailed information on half of the network, and no detail on the other half
may have only 2 ∗ 43 = 128 leaf nodes. Similarly when nodes only route data to
and from a few (1 or 2) sinks, the quadtrees of all nodes won’t have more than 128
partitions. Each leaf node requires 3 bytes to store the mean (1 byte), standard
deviation (1 byte), and the number of hashed values (1 byte). For a quadtree with
128 leaves, this requires 386 bytes of memory. Moreover, we can further reduce this
overhead by adaptively considering lower depths in (un-interesting sub-branches
of) the quadtrees, depending on available memory.

Ultimately, the size of the quadtree is dependent on how much diverse the history
packets that go through this node are. In most practical scenarios, a node relay
packets from a relatively fixed number of sources, mostly likely spatially clustered.
Thus the paths from these sources are naturally compressed and organized in the
quadtree in a compact way. In some sense, for any routing history-based training
and detection, it is necessary to store some history state. The minimum desired
storage size is bounded by the entropy/diversity of the history data. In other words,
our quadtree storage is aiming at the minimum required storage while adapting to
new packets. If sensors are limited in storage capacity, this approach can still work
by only keeping information related to an important subset of the sources while
only issuing beliefs for these.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 25 of 57 Transactions on Sensor Networks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

16 · Gao, Sion, Lederer

7. EXPERIMENTAL RESULTS

We validated our model by simulation with networks of various sizes, ranging from
50 to 1000 nodes. We considered geographic routing (GPSR [Karp and Kung 2000])
to route messages between nodes and data sinks. We note however that our solution
is not hard-coded to GPSR and works with other routing protocols. To model link
and node failures, links and nodes are set to go offline at various times – links were
active only 85% of the time and nodes 95% on average. Unless where otherwise
noted, we used a single sink located at the center of the network, at (xw/2, yw/2),
where w is the width of the network.

The network was first trained to understand the traffic pattern, by assuming a
short interval of un-compromised traffic. This interval was designed to allow each
node to normally create and send at least one message to the sink, while observing
routed traffic and building the hash history. We were then able to test the effect of
moving one node to another location, and compare how the distance moved relates
to our ability to detect it.

7.1 Model Validation

We first evaluated the path metric and the utility of locality sensitive hashing. As
we expect, the further away the claimed location of a node is from its true location,
the worst its belief rating. To this end, nodes’ claimed locations are varied with
respect to their true location and the behavior of the hash values is observed. Figure
3 illustrates that the further away the claimed location of a node is, the greater the
change to its hash value. The figure plots the change in hash value with respect to
the change in path “distance”. The x-axis shows the difference between the honest
path and dishonest path by computing their “distance” as previously defined —
by summing the distances between all the sample points of the 2 paths. For this
simulation a network of 50× 50 was used with a communication radius of 10 and a
sampling rate of 100. A node was randomly selected at distance at least d from the
sink, d being the width of the network. False locations were acquired by randomly
choosing a direction and calculating the coordinates of the new claimed location,
based on the magnitude of the claim. The strong linear correlation shows that
our distance measure between paths truthfully captures the severity of the wrong
location claim.

Using hash values, each node along the path forms a belief as to the honesty of
the packet that comes its way, by comparing its hash value with the hash values
in the history for the region. The beliefs formed will be slightly different for all
nodes on the route. Normally the beliefs are stronger near the start of the path
because the change in the path is more significant at the earlier nodes than those
further away; in other words, since the start nodes are looking at a shorter path
the percentage of the claim is greater.

Figure 4 shows the actual belief ratings formed by each node along a 6 hop path
from source to sink. Values are shown for when the adversary claims to be at
positions from 0 to 35 units away from its true location (or 0 to 4 hops as the nodes
have a radius of 10) in a network of 50×50. As can be seen, the belief drops quickly
with increasingly incorrect claims.
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Fig. 3. As the distance between claimed and true location increases so does the difference between
resulting hash values.
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Fig. 4. Beliefs generated by each node along the path, with increasing claimed distance from true
location.

7.2 Parameter Fine-tuning

There are a number of parameters used in our protocol that interestingly have
little or no effect on the overall belief rating generated. The power of using locality
sensitive hashing with history data overwhelms other network factors.

We mentioned how the hash function requires a random vector of size 2k where
k is the degree of parametrization of the path (“sampling parameter”). Figure 5
shows that even a low sampling parameter will result in quite accurate belief ratings.
There is no clear distinction between a value k ranging from 20 to 2000, only the
sampling parameter of 10 appears insufficient. This is important, because, by using
a lower parametrization we reduce the overhead of the hash function computation.
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Fig. 5. Belief values (as a function of hop-distance of claimed vs. true location) using various

samplings of the paths. This shows that we can reduce the overheads of hash function computation
by using a lower parametrization.

Fig. 6. Belief ratings generated by the following networks: (i)50 × 50, n = 100, R = 10, (ii)
100 × 100, n = 500, R = 10 (iii) 500 × 500, n = 1000, R = 40

This graph only gives a snapshot of what one node “believes”. A node on the path
from source to sink was arbitrarily selected (in this case the node at hop 4) and it’s
beliefs were plotted, this being the reason for the routing irregularities seen in the
figure.

In addition, we have found that network size and density do not noticeably impact
the efficacy of our certification system. Again, this is because the hash values give
overwhelmingly good indicators as to the honesty of a node, regardless of network
specifics. Figure 6 shows belief ratings for three typical network topologies, namely
(i) an area of 50× 50, n = 100, R = 10, deg = 10, (ii) 100× 100, n = 500, R = 10,
deg = 14, (iii) 500× 500, n = 1000, R = 40, deg = 17 — where n is the number of
nodes, R the communication radius and deg the average node degree.

The set of simulations indicate a number of interesting empirical observations
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Fig. 7. The percentage of the number of packets accepted by the sink node with respect to distance
claim of node in terms of the number of hops away it is from true location. The beliefs received
at the sink must be above the given threshold value to be accepted.

that are useful for parameter tuning in practice.

—For sufficiently good belief ratings, only 5 nodes on the relay path are required
to attach their beliefs for the considered topologies. This substantially reduces
communication overhead and validates the stochastic belief propagation as only
a small fraction of nodes need to participate. We note that this ratio is likely
topology, routing and application specific.

—The number of samples (in hashing) for a path can be as low as 20.
—With the above parameters, the belief rating of a packet from a source node that

claimed to be at a location as close as a single hop away, decreases quickly toward
zero.

7.3 Detection of malicious claims

Figure 7 illustrates the percentage of packets accepted by the data sink after examin-
ing their belief values and comparing them with a “threshold value” for acceptance.
Specifically, the sink will require the average of the lowest 3 beliefs on the path to
be above the threshold to be accepted. The graph also shows the percentage of
honest nodes accepted (the distance between claimed location and the true loca-
tion is 0). Having a high threshold of 80% is too strict, and some honest packets
are therefore incorrectly dropped. For this simulation we incorporated variability
into the routing pattern by having only 85% of the links be active at any given time
(thus the routes taken by the packets from the same source vary).

The results show that having only a small percentage of nodes attach beliefs is
sufficient for a surprisingly strong detection ability. For example, by just having 5
beliefs attached, the detection accuracy is 95%.

8. RELATED WORK

Location discovery is a decades-old problem important in all areas where either
free-roaming devices are involved (cell phones), or where devices are deployed in an
ad-hoc fashion (sensor motes). Localization systems usually involve two phases. (i)
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Calculating the distance to some other stations whose positions are known. These
“stations” may be satellites as used in GPS, or cell towers, or some other devices.
In some cases it is sufficient to have the relative distances between devices using a
local coordinate system (see [Capkun et al. 2002]), in which case no pre-established
positions are needed; rather nodes can fix their there own position as the center
of the universe, (0,0), and interpret the location of their peers with respect to
themselves. (ii) Combining distance and/or angle data, whereby a node merges
measurements from a number of different anchors (normally 3) using triangulation,
trilateration, or multi-lateration to pinpoint its exact location. Sometimes a third
phase is executed to refine the distance positions. The Iterative Refinement proce-
dure proposed by Savarese et al. [Savarese et al. 2002] has nodes iteratively update
their positions.

Devices can calculate their position relative to the anchors by sending either an
RF, ultrasound, or light signals to their neighbor (or anchor) and calculate there
distance to it with one of the following techniques: 1) Received Signal Strength
Indicator (RSSI): The receiver measures the strength of an incoming signal, and
based on the known power it was transmitted at, the receiver can calculate its
distance from the transmitter. The propagation loss is translated into a distance
estimate. 2) Time of Arrival (ToA) and Time Difference of Arrival (TDoA) the
receiver uses the known propagation speed of a signal to calculate its location
based on the time it take to receive a signal. 3) Angle of Arrival (AoA) can be used
by devices with omnidirectional antennas to determine the angle at which a signal
is received.

With regard to sensor networks, there is much talk as to whether localization
should rely on external systems and hardware, such as GPS, or whether localization
should be performed using solely a collaborative effort among the nodes themselves
with little or no outside help. The general consensus is that GPS reliance should
be avoided primarily because of the cost associated with it. Equipping every mote
with a GPS receiver would cost many times over the cost for the entire mote. GPS
has other failings too such as its limited efficacy indoors or under tree cover. And,
from a theoretical standpoint, a free-standing solution is far more elegant than one
that needs the support of outside systems.

The advantages and disadvantages of RF vs. ultrasound and ToA vs. AoA
are debated in the literature. RF signals for instance do not propagate well in
environments with great amounts of metal or other reflective material leading to
multipath effects, dead-spots, noise and interference. [Langendoen and Reijers 2003]
gives a thorough comparison of the various methods.

In addition, localization schemes can be classified into range-dependent and
range-independent based schemes. Range-dependent schemes use the ideas men-
tioned above to calculate distances between nodes (ToA [Capkun et al. 2002], TDoA
[Savvides et al. 2001; Priyantha et al. 2000; Hu and Evans 2004; Zhao et al. 2003],
AoA [Niculescu and Nath 2003a], or RSSI [Bahl and Padmanabhan 2000; Girod
and Estrin 2001]). Attacks and countermeasures for range-dependent schemes have
been presented in [Capkun and Hubaux 2005].

In the range-independent localization schemes, nodes determine their location
without use of time, angle, or power measurements. Nodes depend on beacons, or
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connectivity information to compute their location. DV-hop [Nicolescu and Nath
2001], amorphous localization [R. Nagpal 2003], and APIT [He et al. USA] are
examples. Centroid [Bulusu et al. 2000], is an outdoor localization scheme, where
reference points broadcast beacons with their coordinates, and nodes estimate their
position as the centroid of the locations of all the reference points that they hear.
Centroid has a very simple implementation and low communication cost. However,
it results in a crude approximation of node location.

Indoor positioning systems bases on the propagation of sound include Active Bat
[Ward et al. 1997] and Cricket [Priyantha et al. 2000]. In [Bahl and Padmanabhan
2000], RSSI is used and signal-to-noise ratio within the building is pre-measured to
increase accuracy. Other techniques based on the received signal strength include
SpotON [Hightower et al. 2000] and Nibble [Castro et al. 2001]. Positioning algo-
rithms for wireless ad hoc networks are presented in [Doherty et al. 2001], where all
the nodes report their distance estimates to a central location which solves an op-
timization problem of minimizing the error measurements of each node. In [Bulusu
et al. 2000], Bulusu, Heidemann and Estrin propose a positioning system based on
a set of landmark base stations with known positions. Each node then estimates
its position based on its proximity to the base stations. In [Capkun et al. 2002],
Capkun, Hamdi and Hubaux present a GPS-free positioning system in which each
node computes the position of its neighbors in its local coordinate system, and then
the nodes agree on the center and direction of the network coordinate system by
a collaborative action. Niculescu and Nath [Niculescu and Nath 2003b] present a
distributed ad hoc positioning system that works as an extension of both distance
vector routing and GPS positioning, in order to provide approximate positions for
all nodes in a network where only a limited fraction of nodes have self-positioning
capabilities. In [Niculescu and Nath 2003a], the same authors present an ad hoc
network positioning system based on the angle of arrival technique. In [Savvides
et al. 2001] Savvides, Han and Srivastava propose a dynamic fine-grained localiza-
tion scheme for sensor networks in which groups of nodes collaborate to resolve
their positions by solving nonlinear systems whose sizes depend on the sizes of the
groups.

Basu et al. [Basu et al. 2006] are concerned with noisy distance and angle mea-
surements. [Moore et al. 2004] also deals with noisy range measurements without
GPS by formulating the localization problem as a two-dimensional graph realization
problem: given a planar graph with approximately known edge lengths, recover the
Euclidean position of each vertex up to a global rotation and translation.

The secure localization problem has been studied by a number of groups. For
example, the SeRLoc protocol [Lazos and Poovendran 2004] tackles secure localiza-
tion by using specially equipped “locator” nodes that emit powerful beacon signals
through the networks. Depending on the beacons a node hears, it computes the
“center of gravity” of the overlapping regions to determine its location. The locator
devices are tamper proof. In another protocol, robust statistics are used to improve
the vigorousness of an anchor-based localization algorithm in a hostile environment
where the nodes may receive false information from the neighbors [Li et al. 2005].

Even though nodes can obtain their locations correctly by these secure localiza-
tion protocols or extra secure location support such as GPS, these do not prevent
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a node from lying about its location and generating event reports with a false loca-

tion claim. Our primary focus in this paper is the problem of location verification,
which verifies whether a location claim is truthful, and further, whether packets
with a location claim are honest. In the literature a number of protocols have been
proposed by using fine grained timing analysis.

Capkun and Hubaux [Capkun and Hubaux 2004; 2005] introduced Verifiable
Multilateration (VM), to prevent a node from lying about its own position, and
Verifiable Time Difference of Arrival (VTDOA), to stop an adversary from influ-
encing the reported position of a true node. VM uses 3 anchor nodes that surround
the unknown node. Transmissions are with RF signals that travel at the speed of
light, therefore claimant can only pretend to be further away from any one anchor,
but not closer (since it can’t make its transmissions go faster than light). So, to
pretend a greater distance to one anchor node, it must claim a small distance to
another node, which is impossible since trilateration is used. VTDOA compares the
TDOA and ToF distance estimations to prevent a malicious node from jamming
the signal of a true node and replaying it from another location. Technique requires
that the anchor nodes are synchronized with each other (and the claimant node).
The Echo [Sastry et al. 2003] protocol uses a multi-part handshake between some
“verifying” nodes and the claimant using RF and ultrasound to guarantee that the
node is in an asserted area. It does not however pinpoint the precise location of
a node, it only verifies that it is within a rough region, and it requires that the
verifiers be within the region in question. Waters and Felten [Waters and Felten
2003] present a similar scheme which uses tamper-resistant devices.

Timing analysis typically requires highly accurate clocks that may not be realistic
in networks with inexpensive hardware, e.g., cheap sensor nodes. For example,
the VM scheme requires accurate synchronization (maximum clock difference of
1ns) [Capkun and Hubaux 2004; 2005]. The use of ultrasound relaxes a little
the stringent requirement on synchronization, but requires additional hardware
artifact. In addition, these anchor-based schemes typically assume authorized and
trustworthy anchor nodes and often require a sufficient number of anchors that
cover all the sensor nodes, which may not be practical when the deployment and
the operation of the sensor network are in hostile territory.

Moreover, the scheme we propose here does not assume any anchor nodes, nor any
special hardware such as ultrasound transmitters. We take a different approach and
establish, by the participation of all the sensor nodes, a collaborative community
that certifies the locations of packets routed through the network. We can thus
make use of the traffic pattern, brought by the message relaying, at little extra
cost. The challenge resides in what and how each sensor node participates in the
job of certifying the truthfulness of a location claim from a packet and keeping a
low cost of doing so.

The scheme we propose here does not assume any anchor nodes, nor any special
hardware such as ultrasound transmitters. We take a different approach and estab-
lish, by the participation of all the sensor nodes, a collaborative community that
certifies the locations of packets routed through the network. We can thus make
use of the traffic pattern, brought by the message relaying, at little or no extra cost.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 32 of 57Transactions on Sensor Networks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

Collaborative Location Certification for Sensor Networks · 23

9. CONCLUSION AND FUTURE WORK

In this paper we have introduced a collaborative location certification scheme that
determines whether nodes are falsely claiming incorrect locations in their event
reports to the sink. Experiments have shown that with low overhead this scheme
can detect incorrect location claims as close as one hop away from the node’s true
location.

In future work we believe it is important to explore how our protocol can be
applied to detect, in general, anomalous routing behavior. By using history data to
compare traffic patterns we can detect whether the network is under a wormhole or
sinkhole attack. Moreover, we believe significant elegance and additional features
can be achieved by deploying asymmetric key crypto. Specifically, we would like
to investigate if low-overhead asymmetric key cryptography can be deployed to
construct homomorphisms that will allow in-network location claim evaluation to
optimize network utilization and overall consumption by dropping malicious traffic.
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