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Abstract

We introduce a Write-Once Read-Many (WORM) stor-

age system providing strong assurances of data reten-

tion and compliant migration, by leveraging trusted secure

hardware in close data proximity. This is important because

existing compliance storage products and research proto-

types are fundamentally vulnerable to faulty or malicious

behavior, as they rely on simple enforcement primitives ill-

suited for their threat model. This is hard because tamper-

proof processing elements are significantly constrained in

both computation ability and memory capacity – as heat

dissipation concerns under tamper-resistant requirements

limit their maximum allowable spatial gate-density. We

achieve efficiency by (i) ensuring the secure hardware is ac-

cessed sparsely, minimizing the associated overhead for ex-

pected transaction loads, and (ii) using adaptive overhead-

amortized constructs to enforce WORM semantics at the

throughput rate of the storage servers ordinary processors

during burst periods. With a single secure co-processor, on

single-CPU commodity x86 hardware, our architecture can

support over 2500 transactions per second.

1 Introduction

Over 10,000 regulations govern the management of in-

formation in the US alone [25], in financial, life sciences,

health-care industries and the government. These regula-

tions impose a wide range of regulatory policies, ranging

from information life-cycle management (e.g., mandatory

data retention and deletion) to audit trails and storage confi-

dentiality. Examples include the Gramm-Leach-Bliley Act

[19], the Health Insurance Portability and Accountability

Act [30] (HIPAA), the Federal Information Security Man-

agement Act [31], the Sarbanes-Oxley Act [32], the Secu-
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rities and Exchange Commission rule 17a-4 [29], the DOD

Records Management Program under directive 5015.2 [26],

the Food and Drug Administration 21 CFR Part 11 [28], and

the Family Educational Rights and Privacy Act [27].

A recurrent theme to be found in these regulations is the

need for regulatory-compliant storage as an underpinning

to deliver Write Once Read Many (WORM) assurances, es-

sential for enforcing long-term data retention and life-cycle

policies. Main requirements are:

Guaranteed Retention. One main goal of compliance

storage is to support WORM semantics: once written, data

cannot be undetectably altered or deleted before the end of

their regulation-mandated life span, even with physical ac-

cess to the store.

Secure Deletion. Once a record has reached the end of its

lifespan, it can (and in some cases must) be deleted. Deleted

records should not be recoverable even with unrestricted ac-

cess to the underlying storage medium; moreover, deletion

should leave no hints of their existence at the storage server.

Compliant Migration. Retention periods are measured in

years, e.g., intelligence information, educational and health

records have retention periods of over 20 years. Accord-

ingly, compliant data migration mechanisms are required

to transfer information from obsolete to new storage media

while preserving the associated security assurances.

A common thread running through many of these regu-

lations is the perception of powerful insiders as the primary

adversary. These adversaries have superuser powers cou-

pled with full access to the storage system hardware. This

corresponds to the perception that much recent corporate

malfeasance has been at the behest of CEOs and CFOs,

who also have the power to order the destruction or alter-

ation of incriminating records. Since the visible alteration

or destruction of records is tantamount to an admission of

guilt in the context of litigation, a successful adversary must

perform their misdeeds undetectably.

Major storage vendors have responded by offering com-

pliance storage and WORM products, including IBM [14],

and EMC [7]. Unfortunately, these products and research

prototypes do not satisfy the requirements outlined above.
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There are fundamental vulnerabilities to faulty or malicious

behavior, because of the reliance on simple enforcement

primitives such as software and/or simple hardware device-

hosted on/off switches – ill-suited to the target (insider)

threat model. In practice, these first-generation mechanisms

allow an insider using off-the-shelf resources to replicate il-

licitly modified versions of data onto seemingly-identical

storage units without detection.

More generally, the design of compliance storage is ex-

tremely challenging due to the conflict between security,

cost-effectiveness, and efficiency. To defend against insid-

ers, we need processing components that are both tamper-

resistant and active, such as general-purpose trustworthy

hardware. By offering the ability to run logic within a

secured enclosure, such devices allow fundamentally new

paradigms of trust. Trust chains spanning untrusted and

possibly hostile environments can now be built. The trusted

hardware will run certified logic; close proximity to data

coupled with tamper-resistance guarantees allow an optimal

balancing and partial decoupling of the efficiency/security

trade-off. Assurances can now be both efficient and secure.

However, practical limitations of trusted devices pose

significant challenges in achieving sound compliance. Heat

dissipation concerns under tamper-resistant requirements

limit the maximum allowable spatial gate-density. Thus

general-purpose secure coprocessors (SCPUs) are signifi-

cantly constrained in both computation ability and memory

capacity, being up to one order of magnitude slower than

host CPUs. This mandates careful consideration in achiev-

ing efficient protocols. Straight-forward implementations

of the full processing logic inside SCPUs are bound to fail

in practice simply due to lack of performance. The server’s

main CPUs will remain starkly under-utilized and the entire

cost-proposition of having fast untrusted main CPUs and

expensive slower secured CPUs will be defeated.

2 Model

2.1 Economics and Threat Model.

In the threat model for compliance storage, a legitimate

user Alice creates and stores a record (e.g., b2) onto WORM

storage. Later, b2’s existence is regretted and Alice (act-

ing in effect as a malicious “Mallory”) will do everything

she can to prevent Bob (e.g., federal investigators) from ac-

cessing b2 or inferring its existence. The main purpose of

WORM is to defend against such an Mallory. Moreover, as

she may have superuser powers, and direct physical access

to the hardware, we cannot rely on conventional file/storage

system access control mechanisms or data outsourcing tech-

niques to ensure that records are modifiable only in compli-

ance with regulation.

To prevent physical attacks, strong tamper-resistant and

reactive hardware is required. Moreover, due to the data

intensive nature of the application, such hardware should

allow the execution of WORM logic inside its trusted enclo-

sure. This is one of the reasons why passive hardware such

as specified by the Trusted Platform Module [3] specifica-

tions of the Trusted Computing Group can not be deployed.

Regarding the requirements of secure deletion (at the

end of mandated retention periods) that can often be found

in regulation, we note that Alice has always the natu-

ral choice of “remembering” records past their regulation-

mandated retention period, e.g., in non-regulated outside

storage. Thus, in the WORM adversarial model the focus is

mainly on preventing Alice from “rewriting” history, rather

than “remembering” it. Additionally, we prevent the rushed

removal of records before their retention periods.

2.2 Deployment

To enforce strong WORM semantics, we are augmenting

a traditional storage cluster with a set of trusted FIPS 140-

2 Level 4 certified hardware components as main points of

processing trust and tamper-proof assurances. Our architec-

ture employs trusted general-purpose hardware such as the

IBM 4758 PCI and the newer IBM 4764 PCI-X [2] crypto-

graphic coprocessors. The IBM 4764 is a PowerPC-based

board and runs embedded Linux. It can be custom pro-

grammed to run arbitrary code. Moreover, it is compatible

with the IBM Common Cryptographic Architecture (CCA)

API [1]. The CCA implements common cryptographic

services such as random number generation, key manage-

ment, digital signatures, and encryption (DES/3DES,RSA).

If physically attacked, the device destroys internal state (in

a process powered by internal long-term batteries) and shuts

down in accordance with the FIPS 140-2 certification.

Note on timestamps: At various points in this paper times-

tamps generated by the SCPU are deployed to assert the

freshness of integrity constructs. In this context it is impor-

tant to note that the considered SCPUs maintain internal,

accurate clocks protected by their tamper-proof enclosure.

2.3 Cryptographic Tools

We assume readers are familiar with semantically secure

(IND-CPA) encryption and signature mechanisms [10] and

cryptographic hashes [16]. We consider ideal, collision-

free hashes and strongly un-forgeable signatures. Merkle

(hash) trees [17] enable the authentication of item sets by

using only a small amount of information. As suggested

in the data outsourcing literature (where the adversary is an

outsider), Merkle trees are a useful tool in guaranteeing data

integrity. However, in a compliance storage environment,

where new records are constantly being added to the store,
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Merkle tree updates (O(log n) costs) can be a performance

bottleneck. Our solution will overcome this by deploying

a simple yet efficient range authentication technique rely-

ing on the certifying entire “windows” of allocated records

(with O(1) update costs).

3 Related Work

In this section we briefly discuss existing WORM mech-

anisms as well as a set of related research areas such as

encryption and versioning file systems. Please refer to the

full version of the paper for more details.

Tape-based WORM. Tape-based WORM assurances are

provided under the assumption that only approved tape-

readers are deployed. However, given the nature of mag-

netic tape, an attacker can easily dismantle the plastic tape

enclosure and access underlying data on a different cus-

tomized reader.

Optical-disk WORM. Optical disk WORM guarantees

rely on irreversible physical primitive write effects to en-

sure the inability to alter existing content. However, this

also makes optical disks unsuited for scenarios with vari-

able retention periods. Moreover, slow performance, small

data capacity, simple data replication attacks, and the inabil-

ity to fine-tune secure deletion granularity limit their use in

compliance scenarios.

Hard disk-based WORM. Magnetic disks currently of-

fer better overall cost and performance than optical or

tape recording. Thus all recently-introduced WORM stor-

age devices are built atop conventional rewritable magnetic

disks, with write-once semantics enforced through software

(“soft-WORM”). The EMC Centera Compliance Edition

[7] is representative of such soft-WORM offerings. How-

ever its software-only nature renders it vulnerable to simple

insider software and/or physical direct disk-access attacks.

Data integrity can be easily compromised. The same prob-

lems arise with other vendors such as IBM [14].

Worth noting is the work by Huang et.al. [13], which

introduces “content immutable storage”, a mostly soft-

WORM storage system that must satisfy the following prop-

erties: “1) offer overwrite protection that is secure even

against inside attacks; 2) efficiently support index mecha-

nisms; 3) allow records to be properly disposed of after they

have expired; and 4) be low cost yet reliable” [13].

Unfortunately, the proposed mechanisms stop short of

delivering in realistic adversarial settings. Insiders with

super-user powers and physical access can simply open the

magnetic drive enclosures and alter the underlying media

while remaining un-detected. Attempts to prevent this by

storing checksum data at locations logically un-addressable

from user-land are bound to fail for an insider with full

super-user privileges and physical access to the device.

Proposing to provide tamper-proof disks to solve this is

a worthy initiative, yet very costly and difficult to attain in

practice exactly due to the same reasons why SCPUs are

expensive, namely the inability to properly dissipate heat

through a tamper-proof enclosure. Moreover, even if such

devices would be designed, as in any normal system oper-

ation, the associated magnetic media MTBFs will lead to

several failed disks per day. If each disk is indeed designed

for tamper-proofness, its cost will be comparable to the cost

of SCPUs – where a major part of the cost is the certification

process and the tamper-proof enclosure – leading to daily

maintenance costs of hundreds of thousands of dollars.

Versioning File Systems. Versioning file systems [20, 23]

trace and store file changes, making user actions revocable.

With digital audit trails for versioning file systems [20], the

user publishes a small amount of data to a third party, thus

committing to a version history. The published data can be

later used by an auditor to verify the contents of the file sys-

tem. While presenting some conceptual similarities to our

work, such approaches suffer from (i) significant privacy

concerns – few companies would trust third parties with

their internal transaction data, (ii) a set of often impractical

assumptions with grave scalability problems – the existence

of a globally trusted third party that can support trillions of

transactions per second – from the millions of companies

registered in the U.S. alone, and (iii) performance draw-

backs – network-limited bandwidth and high latency.

Provenance-Aware Storage. A Provenance-Aware Stor-

age System (PASS) [12] automatically collects and main-

tains “provenance” of documents, which is defined as the

complete execution history that produced them.

Integrity-Assured Storage. File systems such as I3FS [15]

and GFS [9] perform online real-time integrity verification

for file systems. Venti [22] is an archival storage system that

performs integrity assurance on read-only data.

Encrypted Storage. Many researchers have proposed file-

system-level support for encryption [5, 11, 18, 33]. If native

disk support for encryption is not available, these software

approaches can fill that role, though at slower speeds. Some

of these systems also support data integrity, yet not under

the WORM adversarial model.

4 Architecture

4.1 Overview

We achieve strongly compliant storage in adversarial set-

tings by deploying tamper-resistant, general-purpose trust-

worthy hardware, running certified logic at the server site.

As heat-dissipation concerns greatly limit the performance

of such tamper-resistant secure processors (SCPUs), it is

essential to design a protocol stack with minimal impact on
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cost and efficiency. Specifically, we ensure the access to

secure hardware is sparse, to minimize the SCPU overhead

for expected transaction loads. We deploy special deferred-

signature schemes to enforce WORM semantics at the target

throughput rate of the storage servers main processors.

Design Vision. We believe it is important for the record-

level WORM layer to be simple and efficient. Thus, the

focus of this paper is on record-level logic only. Specifi-

cally, we do not discuss name spaces, indexing or content

addressing here, as these do not constitute the main thrust.

The mechanisms introduced here can be layered at arbi-

trary points in a storage stack. In most implementations we

expect them to be placed either inside a file system (records

being files, VRDs acting effectively as file descriptors), or

inside a block-level storage device interface (e.g., in embed-

ded scenarios without namespaces or indexing constraints).

Small Trusted Computing Base. The main intuition

behind our design is based on the use of the SCPU as a

trusted witness to any regulated data updates (i.e., writes

and deletions). As such, the SCPU is involved in updates

only but not in reads, thus minimizing the overhead for a

query load dominated by read queries. The SCPU witness-

ing is designed to allow the main CPU to solely handle reads

while providing full WORM assurances to clients (who

only need to trust the SCPU). Specifically, upon reading

a regulated data block, clients are offered SCPU-certified

assurances that (i) the block was not tampered with, if the

read is successful, or — if the read fails, either (ii) the block

was deleted according to its retention policy, or (iii) it never

existed in this store.

No Hash-Tree Authentication. To escape the O(logn)
per update cost of the straight-forward choice of deploying

Merkle trees in data authentication, we introduce a novel

mechanism with identical assurances but constant cost per

update. To achieve this, we will label data blocks with

monotonically increasing consecutive serial numbers and

then introduce a concept of sliding “windows” which can

now be authenticated with constant costs by only signing

their boundaries, due to their (consecutive) monotonicity

(vs. going up the Merkle tree in O(logn)). In doing so

we lose some Merkle-tree expressiveness not required here,

namely the ability to handle arbitrary (non-numeric) labels.

Peak Performance. During high system-load periods,

to further increase throughput we temporarily defer expen-

sive witnessing operations (e.g., 1024-bit signatures) with

less expensive short-term secure variants (e.g., on 512-bit).

The short-term security is adaptive and ensures that the sys-

tem can strengthen these weaker constructs later, during

decreased load periods – but within their security lifetime.

Thus, the protocols adaptively amortize costs over time and

gracefully handle high-load update bursts.

Field Description

SN A system-wide unique 64-80 bit serial number.

attr WORM-related attributes, including creation

time, retention period, applicable regulation

policy, shredding algorithm, litigation hold,

f flag, MAC, DAC attributes

RDL The Record Descriptor List – a list of physical

data record descriptors corresponding to

the current VR {RD1, RD2, ...}.

metasig SCPU signature on (SN, attr): Ss (SN, attr).

datasig SCPU signature on SN and a chained hash

(or other incremental secure hashing [4, 6])

of the data records : Ss (SN, Hash (data)).

Table 1. Outline of a VRD.

4.2 Building Blocks

In the following we detail the above intuitions and main

solution building blocks. We define:

1. Data record. A data item governed by storage-

specific regulation. Data records are application spe-

cific and can be files, inodes, database tuples. Records

are identified by descriptors (RDs).

2. Virtual record (VR). A VR basically groups a collec-

tion of records that fall under the same regulation spe-

cific requirements (e.g., identical retention period) and

need to be handled together. VRs are allowed to over-

lap, and records can be part of multiple different VRs

(being referenced through different descriptors). This

enables a greater flexibility and increased expressive-

ness for retention policies, while allowing repeatedly

stored objects (such as popular email attachments) to

potentially be stored only once.

3. Virtual record descriptor (VRD). A unique, se-

curely issued identifier for a VR. Its structure is out-

lined in Table 1. A VRD is uniquely identified by

a securely issued system-wide serial number (SN),

and contains various retention-policy related attributes

(attr), a list of physical data record descriptors (RDL)

for the associated VR data records, and two trusted sig-

natures (metasig and datasig) issued by the SCPU,

authenticating the attr and RDL fields.

4. Virtual record descriptor table (VRDT). A table of

VRDs indexed by their corresponding SNs maintained

by the main (un-trusted) CPU on disk.

4.2.1 The VRDT structure

The untrusted main CPU maintains (on disk) a table of

VRDs (VRDT) indexed by their corresponding serial num-
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bers. These serial numbers are issued by the SCPU at each

update. The SCPU securely maintains two private signature

keys, s and d respectively, that can be verified by WORM

data clients. Their corresponding public key certificates –

signed by a regulatory or general purpose certificate author-

ity – are made available to clients by the main CPU.

The SCPU deploys s for the metasig and datasig sig-

natures in the VRD and d to provide deletion “proofs” that

the main CPU can present to clients later requesting the

deleted records. Specifically, when the retention period for

a record v expires, in the absence of litigation holds, its cor-

responding entry in the VRDT is replaced by Sd(v.SN). A

VR v can be in one of two mutually-exclusive states:

1. active: data records and attribute integrity is enforced

by the metasig = Ss(SN, attr) and

datasig = Ss(SN, Hash(data)) signatures, or

2. expired: with the associated “deletion proof” signature

Sd(v.SN) present in the VRDT.

Thus, the VRDT entries contain either the VRD for active

VRs, or the signed serial number for records whose reten-

tion periods have expired.

Window Management. Serial number issuing and VRDT

management are designed to minimize the VRDT-related

storage. The main idea is to use a sliding window mech-

anism through which previously expired records’ deletion

proofs can be safely expelled and replaced with a securely

signed lower window bound. To handle the fact that while

some of retention expirations are likely to occur in the order

of insertion, this is unlikely to hold for all records, an addi-

tional data structure that controls record expiration will be

required and discussed later.

Specifically, we denote the lowest serial number among

all the still active VRs (whose retention period has not

passed and/or have a litigation hold) as SNbase. Let

SNcurrent be the highest currently assigned SN. Then

the window defined by these two values contain all the

active VRs (and possibly a few already expired ones).

Any deletion proofs outside of this window are not of

WORM-interest any more, and can be securely discarded.

Now the main CPU can convince clients that any of the

records outside of the current windows have been rightfully

deleted (or have not been allocated yet) by simply providing

Ss(SNbase) and Ss(SNcurrent) as proofs.

In order to prevent the main CPU using old

Ss(SNcurrent) values to maliciously ignore recently

added records, one of two mechanisms need to be ap-

plied: (i) upon each access, the client contacts the SCPU

directly to retrieve the current Ss(SNcurrent), or (ii)

Ss(SNcurrent) will also contain a timestamp and the client

will not accept values older than a few minutes – and

the SCPU will update the signature timestamps on disk

every few minutes (even in the absence of data updates).

In general cases, we believe (ii) should be chosen for the

following reasons: in a busy data store, the staleness of the

timestamp on Ss(SNcurrent) is not an issue, due to the

continuously occurring updates; on the other hand, in an

idle system, the small overhead of a signature every few

minutes does not impact the overall throughput.

Naturally, to reduce storage requirements, a similar tech-

nique can be applied further for different expiration behav-

iors. Specifically, if records do not expire in the order of

their insertion – likely if the same store is used with data

governed by different regulations – we can define the fol-

lowing convention: the main CPU will be allowed to re-

place any contiguous VRDT segment of 3 or more ex-

pired VRs with SCPU signatures on the upper and lower

bounds of this deletion “window” defined by the expired

SNs segment. This in effect enables multiple active “win-

dows”, linked by these signed lower/upper bound pairs for

the deleted “windows”. Since the trusted signatures result

in additional SCPU overhead, we can deploy these storage

reduction techniques during idle periods.

It is important to note that the upper and lower deletion

window bounds will need to be correlated, e.g., by associat-

ing the same unique random window ID to both (e.g., inside

the signature envelope). This correlation prevents the main

CPU to combine two unrelated window bounds and thus in

effect construct arbitrary windows. Also, in order to avoid

replay attacks of old Ss(SNbase) signatures (e.g., Mallory

does not want to properly expire records) they will include

expiration times. Moreover, such replays would not achieve

much, as the clients have always the option to re-verify the

correct record retention upon read.

4.2.2 WORM Operations

Write. In a write, the following operations are executed.

The main CPU writes the actual data to the disk, and mes-

sages the SCPU with the resulting RDs and the correspond-

ing attributes (such as regulation policy, retention period

and shredding method parameters). Data records and their

RD descriptors are implementation specific and can be in-

odes, file descriptors, or database tuples.

The SCPU increments the current serial number counter

to allocate a SN for this new VR and then generates its

metasig and datasig signatures. To create datasig the

SCPU is required to read the data associated with the stored

record. It is possible to reduce this overhead at burst-periods

under a slightly weaker security model in which the main

CPU will be trusted to provide datasig’s hash which will

be verified later during idle times. The evaluation in section

5 considers both models.

Next, the main CPU creates a VRD, associates it with

the specified attributes, as well as datasig and metasig,
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both provided by the SCPU. The VRD is then written by the

main CPU to the VRDT maintained in unsecured storage.

Read. To perform a read, a record handle (i.e., the SN )

needs to be provided to the WORM layer. It is important

to note that, as discussed in section 4.1, the associated data

indexing and SN management mechanisms are intently not

discussed here.

A client’s read operation only requires main CPU cy-

cles. This is important, as query loads are expected to be

often mostly read-only. If a read of a VR v is disallowed

on grounds of expired retention, the main CPU will then

either provide Sd(v.SN) (proof of deletion), or prove that

the serial number of v is less than SNbase (thus rightfully

deleted) by providing Ss(SNbase). Similarly, in the case

of the multiple “windows” solution (see section 4.2.1), the

main CPU will need to provide a SCPU-signed lower and

upper bounds for the window of expired SNs that contains

v, as proof of v’s deletion.

In a successful read the client receives a VRD and the

data. It then has the option of verifying the SCPU datasig

and metasig signatures1. If the signatures do not match,

the client is assured that the data (or the corresponding

VRD) has been prepensely modified or deleted. This is so

because the (consecutive) monotonicity of the serial num-

bers allow efficient discovery of discrepancies.

Record Expiration. Record expiration and their subse-

quent deletion is controlled by a specialized Retention Mon-

itor (RM) daemon running inside the SCPU. To amortize

linear scans of the VRDT while ensuring timely deletion of

records, the SCPU maintains a sorted (on expiration times)

list of serial numbers (VEXP), subject to secure storage

space. The VEXP is updated during light load periods (e.g.,

night-time). As common retention rates are of the order of

years, we expect this to not add any additional overhead in

practice. The VEXP is deployed by the SCPU to enable ef-

ficient and timely deletion of records. To this end, the RM is

designed to wake up according to the next expiring entry in

VEXP and invokes a delete operation on this entry. It then

sets a wake-up alarm for the next expiration time and per-

forms a sleep operation to minimize the SCPU processing

load. If a new record with an earlier expiration time is writ-

ten in the meantime, the SCPU resets the alarm timer to this

new expiration time and updates the VEXP accordingly.

To delete a record v, the SCPU first invokes the asso-

ciated storage media-related data shredding algorithms for

v (not discussed). It then provides the main CPU with

Sd(v.SN), the proof of v’s rightful deletion of, which will

replace v’s entry in the VRDT. The main CPU can then

show this signature as proof of rightful deletion to clients.

1The client must have access to the appropriate SCPU public key cer-

tificates (the server can provide them), and have access to a (roughly) syn-

chronized time server.

Litigation. Often, records involved in ongoing litigation

proceedings will reside in active WORM repositories. A

court can then mandate a litigation hold to be placed on

such active records, which in effect will prevent their dele-

tion even if mandated retention periods have expired – such

records cannot be deleted until litigation release. This is

achieved through lit hold and lit release operations both of

which will alter the attr field to set a litigation held flag

together with an associated timeout of the hold. This pro-

cess is going to be performed by the SCPU, who will sub-

sequently update also metasig.

Litigation holds can be set only by authorized parties

identified with appropriate credentials. In their simplest

form, these credentials can be instantiated as a verifiable

regulation-authority signature on the record’s SN, the cur-

rent time stamp C = Sreg(SN, current time) (and an

optional litigation identifier). This signature can be stored

as part of the attr field, e.g., to allow the removal of the

hold by the same authority only (or other similar seman-

tics). This will be achieved by invoking lit release.

4.3 Optimizations: Deferring Strength

A novel throughput-optimizing method we deploy is

to temporarily defer expensive witnessing operations (e.g.,

1024-bit signatures) with less expensive temporary short-

term secure variants (e.g., on 512-bit). This is particularly

important during update burst periods. The short-lived sig-

natures will then be strengthened (e.g., by resigning with

strong permanent keys) during decreased load periods – but

within their security lifetime. In effect this optimization

amortizes SCPU loads over time and thus gracefully han-

dles high-load update bursts.

We use 512-bit RSA signatures as a reference security

lower-bound baseline. 512-bit composites could be factored

with several hundred computers in about 2 months around

year 2000 [24]. However, despite numerous efforts no sig-

nificant progress has been made [8] beyond Number Field

Sieve (NFS) [21] techniques.

To be on the safe side, we assume that today, 512-bit

composites can resist no more than a few tens of minutes

(e.g., 60-180 mins) to factoring attempts by Alice, who may

want to do so in order to alter the metasig and datasig

fields. In the WORM adversarial model however, this can

only rarely be of concern, as Alice is unlikely to regret

record storage and also succeed in breaking the signatures

within such short time-frames.

The intuition then is to deploy fast shorter-lived signa-

tures during burst periods to support high transaction rates.

To achieve an adaptive behavior, optimally balancing the

performance-security trade-off, we need to determine the

maximum signature strength we can afford (e.g., bit-length

of key) for a given throughput update rate. The main idea
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Function Context IBM 4764 P4 @ 3.4Ghz

RSA sig. 512 bits 4200/s (est.) 1315/s

1024 bits 848/s 261/s

2048 bits 316-470/s 43/s

SHA-1 1KB blk. 1.42 MB/s 80 MB/s

64 KB blk. 18.6 MB/s 120+ MB/s

DMA xfer end-to-end 75-90 MB/s 1+ GB/s

Table 2. IBM 4764 vs. iP4@3.4Ghz/OpenSSL 0.9.7f)

here is to understand how much faster a signature of x bits

is, given as known baseline the time taken by an n bit signa-

ture. This is not difficult, however space constraints prevent

further elaboration.

HMACs. We note that an even faster alternative is to

replace short-lived signatures with simple and fast keyed

message authentication codes (e.g., HMACs). This would

in effect remove any authentication bottlenecks during burst

periods, thus allowing practically unlimited throughputs at

levels only restricted by the SCPU – main memory bus

speeds (e.g., 100 − 1000MB/s). The only drawback of

this method is the inability of clients to verify any of the

HMACed committed records until they are (later) signed

by the SCPU. We believe that in a production environment

such HMACs will be the prevalent design choice.

5 Evaluation

The introduced architecture naturally satisfies important

WORM assurances: data integrity and non-repudiation.

Theorem 1. Data records committed to WORM storage can

not be altered or removed undetected.

Theorem 2. Insiders with super-user powers are unable to

“hide” active data records from querying clients by claim-

ing they have expired or were not stored in the first place.

Performance. We consider a setup consisting of an unse-

cured main CPU (P4 @ 3.4 Ghz) and the IBM 4764-001

PCI-X Cryptographic Coprocessor [2] (see table 2).

Figure 1 illustrates the system throughput with increas-

ing record sizes. By deploying the various deferred strong

constructs optimization (section 4.3, with 512 bit signatures

for the weak constructs), update rates of over 2000 - 2500

records/second are possible in burst of no more than 60-180

minutes (life-time of the short-lived constructs). Without

deferring strong constructs, the WORM layer can support

sustained throughputs of 450-500 records/second. These re-

sults naturally scale if multiple SCPUs are available.
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Figure 1. Throughput variation with records size. De-

ferring the signatures yields a throughput of 2000-2500

records/s.

Ultimately, it is likely that even for single-CPU (but es-

pecially for multi-CPU) systems, I/O seek and transfer over-

heads are likely to constitute the main operational bottle-

necks (and not the WORM layer). Typical high-speed en-

terprise disks feature 3-4ms+ latencies for individual block

disk access, twice the projected average SCPU overheads

– these can become dominant, especially when considering

fragmentation and entire multi-block file accesses.

6 Conclusions

Recent compliance regulations are intended to foster and

restore humans’ trust in digital information records and,

more broadly, in our businesses, hospitals, and educational

enterprises. As increasing amounts of information are cre-

ated and live digitally, compliance storage will be a vital

tool in restoring this trust and ferreting out corruption and

data abuse at all levels of society.

In this paper we first identified essential vulnerabili-

ties in existing regulatory compliance systems. We out-

lined the requirement for strong mechanisms. We intro-

duced a regulatory-compliant architecture offering strong

Write Once Read Many assurances by leveraging tamper-

proof hardware. We have shown the architecture to handle

throughputs of over 2500 transactions/second.

In future research it is important to explore traditional

file system primitives layered on top of block-level WORM.
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