
Towards Secure Data Outsourcing

Radu Sion

Network Security and Applied Cryptography Lab
Computer Science, Stony Brook University

sion@cs.stonybrook.edu

Abstract. The networked and increasingly ubiquitous nature of today’s
data management services mandates assurances to detect and deter ma-
licious or faulty behavior. This is particularly relevant for outsourced
data frameworks in which clients place data management with special-
ized service providers. Clients are reluctant to place sensitive data under
the control of a foreign party without assurances of confidentiality. Ad-
ditionally, once outsourced, privacy and data access correctness (data
integrity and query completeness) become paramount. Today’s solutions
are fundamentally insecure and vulnerable to illicit behavior, because
they do not handle these dimensions.

In this chapter we will explore the state of the art in data outsourcing
mechanisms providing strong security assurances of (1) correctness, (2)
confidentiality, and (3) data access privacy.

There exists a strong relationship between such assurances; for exam-
ple, the lack of access pattern privacy usually allows for statistical at-
tacks compromising data confidentiality. Confidentiality can be achieved
by data encryption. However, to be practical, outsourced data services
should allow expressive client queries (e.g., relational joins with arbitrary
predicates) without compromising confidentiality. This is a hard prob-
lem because decryption keys cannot be directly provided to potentially
untrusted servers. Moreover, if the remote server cannot be fully trusted,
protocol correctness become essential.

Here we will discuss query mechanisms targeting outsourced relational
data that (i) ensure queries have been executed with integrity and com-
pleteness over their respective target data sets, (ii) allow queries to be
executed with confidentiality over encrypted data, (iii) guarantee the
privacy of client queries and data access patterns. We will then propose
protocols that adapt to the existence of trusted hardware — so critical
functionality can be delegated securely from clients to servers. We have
successfully started exploring the feasibility of such solutions for provid-
ing assurances for query execution and the handling of binary predicate
JOINs with full privacy in outsourced scenarios.

The total cost of ownership of data management infrastructure is 5–10
times greater than the hardware costs, and more data is produced and
lives digitally every day. In the coming years, secure, robust, and effi-
cient outsourced data management will be demanded by users. It is thus
important to finally achieve outsourced data management a trustworthy
solution, viable in both personal-level and large corporate settings.

1 Introduction

Today, sensitive data is being managed on remote servers maintained by third
party outsourcing vendors. This is because the total cost of data management is
5–10 times higher than the initial acquisition costs [61]. In such an outsourced
“database as a service” [72] model, clients outsource data management to a
“database service provider” that provides online access mechanisms for querying
and managing the hosted data sets.

This is advantageous and significantly more affordable for parties with lim-
ited abilities to manage large in-house data centers of potentially large resource
footprints. By comparison, database service providers [1–6,6–9,11–15] – ranging
from corporate-level services such as the IBM Data Center Outsourcing Services
to personal level database hosting – have the advantage of expertize consolida-
tion. More-over, they are likely to be able to offer the service much cheaper, with
increased service availability (e.g. uptime) guarantees.

Notwithstanding these clear advantages, a data outsourcing paradigm faces
significant challenges to widespread adoption, especially in an online, untrusted
environment. Current privacy guarantees of such services are at best declarative
and often subject customers to unreasonable fine-print clauses—e.g., allowing
the server operator (and thus malicious attackers gaining access to its systems)
to use customer behavior and content for commercial, profiling, or governmen-
tal surveillance purposes [52]. Clients are naturally reluctant to place sensitive
data under the control of a foreign party without strong security assurances of
correctness, confidentiality, and data access privacy. These assurances are es-
sential for data outsourcing to become a sound and truly viable alternative to
in-house data management. However, developing assurance mechanisms in such
frameworks is challenging because the data is placed under the authority of an
external party whose honest behavior is not guaranteed but rather needs to be
ensured by this very solution.

In this chapter, we will explore the challenges of designing and implementat-
ing robust, efficient, and scalable relational data outsourcing mechanisms, with
strong security assurances of correctness, confidentiality, and data access privacy.
This is important because today’s outsourced data services are fundamentally
insecure and vulnerable to illicit behavior, as they do not handle all three dimen-
sions consistently and there exists a strong relationship between such assurances:
e.g., the lack of access pattern privacy usually allows for statistical attacks com-
promising data confidentiality. Even if privacy and confidentiality are in place, to
be practical, outsourced data services should allow sufficiently expressive client
queries (e.g., relational operators such as JOINs with arbitrary predicates) with-
out compromising confidentiality. This is a hard problem because in most cases
decryption keys cannot be directly provided to potentially untrusted database
servers. Moreover, result completeness and data integrity (i.e., correctness) be-
come essential. Therefore, solutions that do not address these dimensions are
incomplete and insecure.

We will explore designs for outsourced relational data query mechanisms that
(i) ensure queries have been executed with integrity and completeness over their

respective target data sets, (ii) allow queries to be executed with confidentiality
over encrypted data, and (iii) guarantee the privacy of client queries and data
access patterns:

Correctness. Clients should be able to verify the integrity and completeness
of any results the server returns. For example, when executing a JOIN query,
they should be able to verify that the server returned all matching tuples.

Confidentiality. The data being stored on the server should not be deci-
pherable either during transit between the client and the server, or at the server
side, even in the case when the server is malicious.

Access Privacy. An intruder or a malicious server should not be able to
perform statistical attacks by exploiting query patterns. For example, it should
not be able to compromise data confidentiality by correlating known public in-
formation with frequently queried data items.

We will discuss how to design protocols that adapt to the existence of trusted
hardware — so critical functionality can be delegated securely from clients to
servers and increased assurance levels can be achieved more efficiently. More-
over, it is important to design for scalability to large data sets and high query
throughputs. We note that client authentication and authorization, two impor-
tant but orthogonal security dimensions, are extensively addressed in existing
research, discussed in both this book and elsewhere [22, 27, 31, 33, 39, 68, 75, 79,
80,88,90,102,103,105,123]; therefore they and are not the main focus here. The
assurances discussed here naturally complement these dimensions in providing
increased end-to-end security.

2 Designing Secure Data Outsourcing Mechanisms.

2.1 Model

In our discourse, we will consider the following concise yet representative interac-
tion model. Sensitive data is placed by a client on a database server managed by
a database service provider. Later, the client or a third party will access the out-
sourced data through an online query interface exposed by the server. Network
layer confidentiality is assured by mechanisms such as SSL/IPSec.

We will represent both the server and the client as interactive polynomial-
time Turing Machines; we write Cli for the client and Serv for the server ma-
chine. A client can interact with the server and issue a sequence of update or
processing queries (Q1, . . . , Qi). We call such a sequence of queries a trace T .
After executing a query Q, the client Turing Machine either outputs ⊤ or ⊥,
indicating whether the client accepts or rejects the server’s response (denoted as
DT ,Q); in the first case, the client believes that the server replied honestly. We
write Cli(T , Q, DT ,Q) ∈ {⊤,⊥} to denote the output of the client as a result of
the server’s execution of trace T and query Q yielding the result DT ,Q.

A server’s response D is said to be consistent with both T and Q, if an honest
server, after starting with an empty database and executing trace T honestly,
would reply with D to the query Q. Two traces T and T ′ are called similar with

respect to Q, written as T ≈QT
′, if the query Q yields the same answer when

queried after a trace T or T ′, i.e., DT ,Q = DT ′,Q.

The data server is considered to be un-trusted, potentially malicious, com-
promised or simply faulty. Given the possibility to get away undetected, it will
attempt to compromise data confidentiality, infer data access patterns and re-
turn incorrect query results. In certain cases we will assume reasonable compu-
tational limits such as the inability to factor large numbers or find cryptographic
hash collisions. We will not make any limiting assumptions on the DBMS. In
particular we will accommodate both multi-processor and distributed query pro-
cessing DBMS. We will collaborate with other researches to investigate how to
accommodate non-relational data integration [17] but mention that this does not
constitute the subject of this work.

The main performance constraint we are interested in is maintaining the
benefits of outsourcing. In particular, for a majority of considered operations, if
they are more efficient (than client processing) in the unsecured data outsourcing
model – then they should still be more efficient in its secured version. We believe
this constraint is essential, as it is important to identify solutions that validate
in real life.

We note the existence of a large number of apparently more elegant cryp-
tographic primitives that could be deployed that would fail this constraint. In
particular, experimental results indicate that often, individual data-item opera-
tions on the server should not involve any expensive modular arithmetic such as
exponentiation or multiplication. We believe it is imperative to resist the (largely
impractical) trend to use homomorphisms in server side operations unless abso-
lutely necessary – as this often simplifies protocols in theory but fails in practice
due to extremely poor performance, beyond usability.

Throughout this chapter we reference active secure hardware such as the
IBM 4758 PCI [18] and the newer IBM 4764 PCI-X [19] cryptographic copro-
cessors [21]. The benefits of delpoying such hardware in un-trusted remote data
processing contexts can be substantial, because the server can now run important
parts of the secure client logic. Additionally, the secure hardware’s proximity to
the data will reduce communication overheads. Practical limitations of such de-
vices however, make this a non-trivial task. To explain this, we briefly survey
the processors.

The 4764 is a PowerPC - based board and runs embedded Linux. The 4758 is
based on a Intel 486 architecture and is preloaded with a compact runtime envi-
ronment that allows the loading of arbitrary external certified code. The CPUs
can be custom programmed. Moreover, they (4758 models 2 and 23 and 4764
model 1) are compatible with the IBM Common Cryptographic Architecture
(CCA) API [20]. The CCA implements common cryptographic services such as
random number generation, key management, digital signatures, and encryption
(DES/3DES,RSA). Both processors feature tamper resistant and responsive de-
signs [56]. In the eventuality of illicit physical handling, the devices will simply
destroy their internal state (in a process powered by internal long-term batteries)
and then shutdown. Tamper resistant designs however, face major challenges in

heat dissipation. This is one of the main reasons why secure coprocessors are
significantly constrained in both computation ability and memory (main heat
producer) capacity, often being orders of magnitude slower that the main CPUs
in their host systems. For example, at the higher end, the 4758s feature 100Mhz
CPUs and 8MB+ of RAM.

These constraints require careful consideration in achieving efficient proto-
cols. Simplistic implementations of query processors inside the SCPU are bound
to fail in practice simply due to lack of performance. The host CPUs will remain
starkly underutilized and the entire cost-proposition of having fast (unsecured)
main CPUs and an expensive and slow secured CPU will be defeated. Efficient
designs are likely to access the secure hardware just sparsely, in critical portions,
not synchronized with the main data flow. Therefore we will pursue designs
that use such hardware only as a trusted-aide, while considering its limited I/O
and computation throughput. For example, we believe efficient solutions can be
achieved by balancing a storage-computation trade-off when main un-secured
storage capacity is significantly cheaper than the purchase of additional secure
computation elements. In such a model, additional secure metadata structures
are constructed over the outsourced data, by both clients and SCPUs. These
enable the unsecured main CPU to perform computation-intensive portions of
secure queries without requiring trusted hardware support. The cost of con-
structing these additional helper data structures will be amortized over multiple
query instances.

We use the term encryption to denote any semantically secure (IND-CPA)
encryption mechanism [65], unless specified otherwise. We note that the mecha-
nisms introduced here do not depend on any specific encryption mechanism. A
one-way cryptographic hash H() is a function with two important properties of
interest: (i) it is computationally infeasible, for a given value V′ to find a V such
that H(V) = V′ (one-wayness), and (ii) changing even one bit of the hash input
causes random changes to the output bits (i.e., roughly half of them change even
if one bit of the input is flipped). Examples of potential candidates are the MD5
(fast) or the SHA class of hashes (more secure). Bloom filters [35] offer a compact
statistical representation of a set of data items and fast set inclusion tests. They
are one-way, in that, the “contained” set items cannot be enumerated easily. For
more details see [65, 113].

2.2 Query Correctness

Informally, we will call a query mechanism correct if the server is bound to the
sequence of update requests performed by the client. Either the server responds
correctly to a query or its malicious behavior is immediately detected by the
client:

Definition 1. A query protocol is correct, if (except with negligible probability
[65]) for all traces T and T ′ with T ′ 6≈QT , any query Q and server response
DT ′,Q, we have Cli(T , Q, DT ′,Q) = ⊥.

In applied settings, correctness in database outsourcing can be often decom-
posed into two protocol properties, namely data integrity and query complete-
ness. Data integrity guarantees that outsourced data sets are not tampered with
by the server. Completeness ensures that queries are executed against their entire
target data sets and that query results are not ‘truncated” by servers.

Existing work focuses mostly on solutions for simple one-dimensional range
queries, and variants thereof. In a publisher-subscriber model, Devanbu et al.
deployed Merkle trees to authenticate data published at a third party’s site
[54], and then explored a general model for authenticating data structures [97,
98]. Hard-to-forge verification objects are provided by publishers to prove the
authenticity and provenance of query results.

In [104], mechanisms for efficient integrity and origin authentication for sim-
ple selection predicate query results are introduced. Different signature schemes
(DSA, RSA, Merkle trees [100] and BGLS [37]) are explored as potential alterna-
tives for data authentication primitives. Mykletun et al. [57] introduce signature
immutability for aggregate signature schemes – the difficulty of computing new
valid aggregated signatures from an existing set. Such a property is defeating a
frequent querier that could eventually gather enough signatures data to answer
other (un-posed) queries. The authors explore the applicability of signature-
aggregation schemes for efficient data authentication and integrity of outsourced
data. The considered query types are simple selection queries.

Similarly, in [94], digital signature and aggregation and chaining mechanisms
are deployed to authenticate simple selection and projection operators. While
these are important to consider, nevertheless, their expressiveness is limited. A
more comprehensive, query-independent approach is desirable. Moreover, the use
of strong cryptography renders this approach less useful. Often simply transfer-
ring the data to the client side will be faster.

In [108] verification objects VO are deployed to authenticate simple data
retrieval in “edge computing” scenarios, where application logic and data is
pushed to the edge of the network, with the aim of improving availability and
scalability. Lack of trust in edge servers mandates validation for their results –
achieved through verification objects.

In [77] Merkle tree and cryptographic hashing constructs are deployed to
authenticate the result of simple range queries in a publishing scenario in which
data owners delegate the role of satisfying user queries to a third-party un-
trusted publisher. Additionally, in [95] virtually identical mechanisms are de-
ployed in database outsourcing scenarios. [53] proposes an approach for signing
XML documents allowing untrusted servers to answer certain types of path and
selection queries.

Drawbacks of these efforts include the fact that they operate in an unrealistic
“semi - honest” adversarial model. As a result, for example, data updates are not
handled properly and the mechanisms are vulnerable to “universe split” attacks
discussed in section 2.2.

Moreover, deploying expensive cryptographic operations (e.g., aggregate sig-
natures, homomorphisms) has the potential to defeat the very purpose of out-

sourcing. Unless the actual query predicates are comparably compute intensive,
often simply transferring the entire database and executing the query on the
client will be faster. This is the case simply because securely server - processing
a bit will be more expensive that the bit transfer over a network. A detailed
argument can be found in [118] and in section 2.4. Maybe most importantly,
existing solutions operate under un-realistic “cooperating” server assumptions.
For example, they are unable to address data updates. More specifically, at the
time of a client update, the server is assumed to cooperate in also updating corre-
sponding server-side security checksums and signature chains. A truly malicious
server however, can choose to ignore such requests and compromise future cor-
rectness assurances by omitting the updated data from the results (causing an
“universe split”). This drastically limits the applicability of these mechanisms.

We started to explore query correctness by first considering the query expres-
siveness problem. Thus, in [114] we proposed a novel method for proofs of actual
query execution in an outsourced database framework for arbitrary queries. The
solution prevents a “lazy” or malicious server from incompletely (or not at all)
executing queries submitted by clients. It is based on a mechanism of runtime
query “proofs” in a challenge - response protocol. For each batch of client queries,
the server is “challenged” to provide a proof of query execution that offers assur-
ance that the queries were actually executed with completeness, over their entire
target data set. This proof is then checked at the client site as a prerequisite to
accepting the actual query results as accurate.

The execution proofs are built around an extension to the ringer concept
first introduced in [67]. Its core strength derives from the non-“invertibility”
of cryptographic hash functions. In other words, a successful fake execution
proof requires the “inversion”1 of a cryptographic hash or a lucky guess. The
probability of the lucky guess is known, controllable and can be made arbitrary
small. If, as part of the response to a query execution batch, the server includes a
correct, verifiable query execution proof, the client is provided with a (tunable)
high level of assurance that the queries in the batch were executed correctly. This
constitutes a strong counter-incentive to “lazy”, (e.g., cost-cutting) behavior.

We implemented a proof of concept and experimentally validated it in a real-
world data mining application, proving its deployment feasibility. We analyzed
the solution and show that its overheads are reasonable and far outweighed by
the added security benefits. For example an assurance level of over 95% can be
achieved with less than 25% execution time overhead.

Future Work: Powerful Adversary. Arbitrary Queries. Data Updates.

As the above query execution proofs only validate server-side processing but
not also actual returned results, handling truly malicious adversaries will require
different mechanisms. Moreover, while compute-intensive query scenarios are
extremely relevant in data-mining applications, a more general solution should
consider general types of queries with less computation load per data tuple (e.g.,
aggregates such as SUM, COUNT). Handling these is especially challenging due

1 We informally define “inversion” of hash functions as finding at least one input that
hashes to a target output.

to the large size of the query space, the hardness of building general purpose
authenticators and the hardness of predicting future query loads.

We believe future work should focus on two research directions: (1) the design
of secure query (de)composition techniques coupled with specialized query - spe-
cific metadata that enables correctness assurance protocols for a set of primitive
queries, and (2) mechanisms for trusted hardware.

In (1), additional server-side storage will be traded for efficient correctness as-
surances. At outsourcing time, in a pre-processing phase, clients generate query
and predicate - specific metadata that will be stored on the server, authenticated
by minimal state information maintained by clients. For each considered prim-
itive predicate and type of query (e.g., simple range query), its corresponding
“correctness metadata” will allow the client (or a trusted proxy such as a se-
cure CPU) to assess the correctness of individual results. We call such primitive
queries for which correctness can be assessed, “correctness-assured”.

It is important to build on existing work [57, 77, 94, 95, 104], to reduce the
computational footprint on the server, and allow consistent handling of updates
in the presence of a truly malicious server. For example, we believe incremental
hashing paradigms can be deployed to persist client-side authentication informa-
tion. This will allow a client to efficiently authenticate returned signature values,
thus detecting any malicious behavior even after updates.

Another future work item will be to design techniques that decompose or
rewrite complex queries into a subset of the primitive queries considered above.
Consider the following simple, yet illustrative query listing all account holders
with account rates less than the Federal Reserve’s base rate on January 1st,
2006:

SELECT accounts.name FROM accounts WHERE accounts.rate <

(SELECT federalreserve.baserate FROM federalreserve

WHERE convert(char(10),federalreserve.date,101)=’01/01/2006’)

Its correctness can be efficiently assessed by requiring the server to prove cor-
rectness for the inner query first, followed by the outer query. Similar decompo-
sitions can be applied to any correctness-assured nested queries. Nevertheless,
often such query decomposition or rewriting cannot be achieved with efficiency
for arbitrary queries in fully unsecured environments. For example, it is not triv-
ial to extend correctness - assured simple range predicates to even marginally
more complex multi-dimensional range queries such as

SELECT X.a FROM X WHERE X.b > 10 AND X.c > 20

It is important to investigate composition mechanisms that allow the utilization
of metadata ensuring correctness of either simple range predicate (e.g., X.b > 10

or X.c > 20), to guarantee correctness for the composite predicate.
To achieve correctness assurances for a larger class of queries we propose to

consider mechanisms that leverage the presence of active secure hardware such
as secure co-processors (SCPUs). Achieving efficiency however, is an extremely
challenging task. Trivially deploying query processor functionality inside power

- constrained SCPUs is simply not scalable in practice due to limited commu-
nication and computation throughputs. We believe protocols that combine the
query decomposition approach in (1) with SCPU processing for required, yet
unavailable correctness-assured primitive queries constitute a promising avenue
of future research. As a result, SCPU processing will be minimal and amortized
over multiple query instances.

As an example, in the above multi-dimensional range query, a trusted SCPU
hosted by the server will instruct the main server CPU to execute and prove
correctness for the first predicate (X.b > 10) and then evaluate the second pred-
icate (X.c > 20) securely on the result. Heuristics could be deployed to evaluate
which of the individual predicates would result in a smaller result set so as to
minimize the SCPU computation. Optionally, the process will also generate as-
sociated metadata for the joint predicate and cache it on the server for future
use, effectively amortizing the cost of this query over multiple instances.

Operating in an unified client model [54,104] assumes the existence of a single
client accessing the data store at any one time. In multi-threaded data-intensive
application scenarios however, such a model is often of limited applicability.
It is important to allow multiple client instances or even different parties to
simultaneously access outsourced data sets.

This is challenging because allowing different parties to access the same data
store may require the sharing of secrets among them. This is often not a scalable
proposition, in particular considering different administrative domains. More-
over, data updates require special consideration in such a scenario due to what
we call the “universe split” phenomenon. We explain this in the following.

In single - client settings, to efficiently handle incoming data updates, update-
able metadata structures can be designed, e.g., leveraging such mechanisms as
the incremental hashing paradigm of Bellare and Micciancio [26]. Recently we
have demonstrated the feasibility of such methods in the framework of network
data storage. In [117] outsourced documents were incrementally authenticated
with efficient checksums allowing updates, document additions and removals in
constant time.

However, when two clients simultaneously access the same data sets, a mali-
cious server can chose to present to each client a customized version of the data
universe, by keeping the other client’s updates hidden from the current view.
We believe other authors have encountered this issue in different settings, e.g.,
by Li et al. [91] in an un-trusted networked file system setting2. Naturally, if
mutually aware of their accesses, the clients can use an external authenticated
channel to exchange transactional state on each other’s updates. This can occur
either during their access, if simultaneous, or asynchronously otherwise. Peri-
odically executing such exchanges will significantly decrease the probability of
undetected illicit “universe split” server behavior. Over multiple transactions,
undetected malicious behavior will become unsustainable.

In practice, such awareness and online interaction assumptions are not al-
ways acceptable, and often the only potential point of contact between clients is

2 In their work universe splitting would be the inverse of “fetch-consistency”

the database server itself. One solution to this problem is to design alternative
protocols that leverage the existence of active secure hardware such as secure
co-processors (SCPU). The SCPU will authenticate clients securely and also
persist transactional state, including a minimal amount of checksum informa-
tion used to authenticate transaction chains of committed client updates. The
unique vendor-provided SCPU public key and its associated trust chain pro-
vide an authenticated communication channel between the SCPU and database
clients. The clients will use this channel to retrieve up to date transactional state
at the initiation of each server interaction. This will defeat “universe split” at-
tacks. Servers are unable to impersonate SCPUs without access to the secrets in
its tamper-proof storage.

2.3 Data Confidentiality

Confidentiality constitutes another essential security dimension required in data
outsourcing scenarios, especially when considering sensitive information. Poten-
tially un-trusted servers should be able to process queries on encrypted data on
behalf of clients without compromising confidentiality. To become practical, any
such processing mechanism requires a certain level of query expressiveness. For
example, allowing only simple data retrieval queries will often not be sufficient
to justify the outsourcing of the data – the database would then be used as a
passive data repository. We believe it is important to efficiently support complex
queries such as joins and aggregates with confidentiality and correctness.

Hacigumus et al. [71] propose a method to execute SQL queries over partly
obfuscated outsourced data. The data is divided into secret partitions and queries
over the original data can be rewritten in terms of the resulting partition identi-
fiers; the server can then partly perform queries directly. The information leaked
to the server is claimed to be 1-out-of-s where s is the partition size. This bal-
ances a trade-off between client-side and server-side processing, as a function
of the data segment size. At one extreme, privacy is completely compromised
(small segment sizes) but client processing is minimal. At the other extreme, a
high level of privacy can be attained at the expense of the client processing the
queries in their entirety. Moreover, in [76] the authors explore optimal bucket
sizes for certain range queries. Similarly, data partitioning is deployed in build-
ing “almost”-private indexes on attributes considered sensitive. An untrusted
server is then able to execute “obfuscated range queries with minimal informa-
tion leakage”. An associated privacy-utility trade-off for the index is discussed.
As detailed further in section 2.3 the main drawbacks of these solutions lies in
their computational impracticality and inability to provide strong confidentiality.

One of the main drawbacks of such mechanisms is the fact that they leak
information to the server, at a level corresponding to the granularity of the par-
titioning function. For example, if such partitioning is used in a range query,
to execute rewritten queries at the partition level, the server will be required
to precisely know the range of values that each partition contains. Naturally,
increasing partition sizes tends to render this knowledge more fuzzy. This, how-
ever, requires additional client side work in pruning the (now) larger results (due

to the larger partitions). Even if a single data tuple matches the query, its en-
tire corresponding partition will be transferred to the client. On the other hand,
reducing partition size will immediately reveal more information to the server,
as the smaller number of items per partition and the knowledge of the covered
range will allow it to determine more accurately what the likely values are for
each tuple. Additionally, for more complex queries, particularly joins, due to
the large segments, such methods can feature an communication overhead larger
than the entire database, hardly a practical proposition.

Nevertheless, these efforts illustrate a trade-off between confidentiality and
overheads: large partitions reveal less but require more computation on the client,
small partitions reveal more but increase efficiency. Ultimately, however, unless
partitions are very large (in which case the purpose of outsourcing is likely
defeated by the additional overheads) true confidentiality cannot be achieved by
such partitioning schemes. Statistical security needs to be replaced by efficient,
yet stronger mechanisms. In the following we show how this can be achieved not
only for range queries but also for more complex joins.

In ongoing work [42] we explore a low-overhead method for executing binary
predicate joins with confidentiality on outsourced data. It handles general binary
join predicates that satisfy certain properties: for any value in the considered
data domain, the number of corresponding “matching” pair values (for which
the predicate holds) is (i) finite, and (ii) the average of its expected value is
upper bound. We call these predicates expected finite match (EFM) predicates.

Such predicates are extremely common and useful, including discrete data
scenarios, such as ranges, inventory and company asset data-sets, forensics,
genome and DNA data (e.g., fuzzy and exact Hamming distances), and health-
care databases (e.g., bacteria to antibiotics matches). For illustration purposes
let us consider the following discrete time – range join query that joins arrivals
with departures within the same hour (e.g., in a train station):

SELECT * FROM arrivals,departures

WHERE departures.time - arrivals.time < 60

For any finite time granularity (e.g. minutes) the join predicate above is an EFM
predicate (e.g., with an AEMS of 60). Performing such joins at the server side
on encrypted data, is the main functionality desired here.

To analyze the confidentiality assurances of this solution we will consider
here a server that is curious : given the possibility to get away undetected, it
will attempt to compromise data confidentiality (e.g., in the process of query
execution). Naturally, it should not be able to evaluate predicates (i) without the
permission of the client, (ii) on two values of the same attribute, and (iii) on data
not specified/allowed by the client – specifically, no inter-attribute transitivity
should be possible. Additionally it should not be able to (iv) evaluate other
predicates on “unlocked” data. This also means that no additional information
should be leaked in the process of predicate evaluation. For example, allowing
the evaluation of p(x, y) := (|x − y| < 100), should not reveal |x − y|.

One solution relies on the use of predicate-specific metadata that clients
place on the server together with the main data sets. This metadata does not

reveal anything about the main data fields and stays in a “locked” state until its
corresponding data is involved in a join. The client then provides “unlocking”
information for the metadata and the server is able to perform exactly the con-
sidered query, without finding out any additional information. In the following
we briefly outline this. For more details see [42].

Let N be a public security parameter, and K a symmetric (semantically
secure) encryption key. For each column A, let RA

1
6= RA

2
be two random uniform

values in {0, 1}N . In a client pre-processing phase, for each confidential data
attribute A with elements ai, i = 1..n, the client computes an obfuscation of ai,
O(ai) := H(ai) ⊕ RA

1
. For all values y ∈ P (ai) := {y|p(ai, y) = true}, the client

computes H(y) ⊕ RA
2
. and stores it into a Bloom filter specific to ai, BF (ai).

It then outsources {EK(ai), O(ai), BF (ai)} to the server. To allow a join of
two columns A and B on the predicate p, the client sends the server the value
qAB = RA

2
⊕ RB

1
. For each element ai in column A and bj in column B, the

server computes Tb→a := O(bj) ⊕ qAB = H(bj) ⊕ RA
2
. It then outputs all tuples

< EK(ai), EK(bj), . . . > for which BF (ai) contains Tb→a. The following can be
shown:

Theorem 1. The server cannot perform join operations on initially stored data.

Theorem 2. The server cannot perform transitive joins.

Theorem 3. Given a binary EFM predicate p, for any matching pair of values
returned as a result of a join, < x′ = EK(ai), y

′ = EK(bj) >, no additional
information about ai and bj or their relationship can be inferred by the server,
other than the fact that p(ai, bj) = true.

The solution handles data updates naturally. For any new incoming data
item, the client pre-processing can be executed per-item and its results simply
forwarded to the server. Additionally, in the case of a multi-threaded server,
multiple clients (sharing secrets and keys) can access the same data store simul-
taneously.

We note also that multiple predicate evaluations are also accommodated nat-
urally. Confidentiality can be provided for the attributes involved in binary EFM
predicates. In the following database schema, the association between patients
and diseases is confidential but any other information is public and can be used
in joins. To return a list of New York City patient names and their associated an-
tibiotics (but not their disease) the server will access both confidential (disease)
and non-confidential (name,zip-code) values. In the following, only the predicate
md() – associating antibiotics with diseases – will operate on confidential data:

SELECT patients.name,antibiotics.name FROM patients,antibiotics

WHERE md(patients.disease,antibiotics.name) AND patients.zipcode = 10128

This will be achieved (as discussed above) by encrypting the patients.disease

attribute and generating metadata for the antibiotics relation (which contains
a list of diseases that each antibiotic is recommended for).

Additional predicate instances and applications of this solution are explored
in [42], including mechanisms for Hamming distance evaluations and DNA fuzzy

match predicates. Moreover, we show that the computation overheads of the
solution are small. In initial evaluations, throughputs of well beyond 0.5 million
predicate evaluations per second can be accomodated.

Future Work: Arbitrary Predicates. Policies. Query Composability.

In future work, we believe it is important to pursue arbitrary query types and
multi-assurance compositions. For example we would like to understand how to
endow the above method with correctness assurances and data access privacy as
discussed in sections 2.2, 2.4 respectively.

Moreover, it is important to analyze the applicability of the protocols for
general types of predicates. We believe a recursive decomposition approach can
be applied to handle multiple argument EFM predicates. Transformations from
arbitrary predicates to a canonical EFM form should be explored. In a first
stage this is easy to achieve by simply discretizing queries over continuous data
domains. As this will introduce small errors in results (of a magnitude inverse
proportional to the quantization), this process needs to be designed such that
the errors will result only in the addition of a small, controllable, number of
non-matching tuples. These will then be pruned by the client.

To fully leverage the potential offered by confidentiality assurances, it is
important to investigate an integration with security policy frameworks [60,111].
This will allow for more complex specifications over the space of data sets, access
rights, confidentiality policies and principals. For example, such specifications
could include relaxation of expensive DBMS - maintained access control for
data sets that are already encrypted.

Exploring novel notions of confidential query “composability” in the presence
of multiple confidential data sources and associated secrets (e.g., cryptographic
keys) is another avenue of future research. We believe this can be achieved by
deploying intra-server secure multi-party computation (SMC) protocols [55, 58,
59, 63, 78] mediated by secure hardware. The presence of secure hardware will
result in more efficient, practical SMC. This will ultimately allow for multi-source
confidential data integration.

2.4 Data Access Privacy

In existing protocols, even though data sets are stored in encrypted form on
the server, the client query access patterns leak essential information about the
data. A simple attack can correlate known public information with hot data
items (i.e., with high access rates), effectively compromising their confidential
nature. In competing business scenarios, such leaks can be extremely damaging,
particularly due to their unpredictable nature.

This is why, to protect confidentiality, it is important to also provide assur-
ances of access pattern privacy. No existing work has tackled this problem yet
for relational frameworks. It is thus essential to explore query protocols that
leak minimal information about the currently executing query. Access patterns
to data tuples become less meaningful when access semantics are unknown to
the server. For example the binary predicate join method proposed above does

not require the server to know the actual join predicates. Achieving such goals
for arbitrary relational queries will be a challenging proposition in today’s query
processors, potentially requiring fundamental changes in base query processing.

To achieve these goals we first turn to existing research. Private Informa-
tion Retrieval (PIR) protocols were first proposed as a theoretical primitive for
accessing individual items of outsourced data, while preventing servers to learn
anything about the client’s access patterns [47]. Chor et al. [48] proved that in
information theoretic settings in which queries do not reveal any information
about the accessed data items, a solution requires Ω(n) bits of communication.
To avoid this overhead, they show that for multiple non-colluding databases
holding replicated copies of the data, PIR schemes exist that require only sub-
linear communication overheads. This multi-server assumption however, is rarely
viable in practice.

In single-server settings, it is known that PIR requires a full transfer of
the database [47, 49] for computationally unbounded servers. For bounded ad-
versaries however, computational PIR (cPIR) mechanisms have been proposed
[40, 41, 45, 86, 87, 93, 96, 122]. In such settings however, it is trivial to establish
an O(n) lower bound on server processing, mandating expensive trapdoor op-
erations per bit, to achieve access privacy. This creates a significant privacy -
efficiency trade-off between the required server computation cycles and the time
to actually transfer the data and perform the query at the client site.

We explore this trade-off in [118] where we discuss single-server computa-
tional PIR for the purpose of preserving client access patterns leakage. We show
that deployment of non-trivial single server private information retrieval proto-
cols on real (Turing) hardware is orders of magnitude more time-consuming than
trivially transferring the entire database to the client. The deployment of com-
putational PIR in fact increases both overall execution time, and the probability
of forward leakage, when the deployed present trapdoors become eventually vul-
nerable – e.g., today’s access patterns will be revealed once factoring of today’s
values will become possible in the future.

We note that these results are beyond existing knowledge of mere “impracti-
cality” under unfavorable assumptions. On real hardware, no existing non-trivial
single server PIR protocol could have possibly had outperformed the trivial
client-to-server transfer of records in the past, and is likely not to do so in the
future either. Informally, this is due to the fact that it is more expensive to
PIR-process one bit of information than to transfer it over a network.

PIR’s aim is to simply transfer one single remote bit with privacy. We showed
above that theoretical lower bounds prevent current cryptography to offer effi-
cient solutions in practical settings. Arguably, for more complex query processing
this will also be the case. Thus it is important to design practical solutions that
have the potential to break the PIR computation-privacy trade-off. We believe
a very promising avenue for further research relies on deploying secure hard-
ware hosted by the server, allowing the delegation of client-logic in closer data
proximity.

And because (as discussed above) trivial “run client ”proxy” inside secure
CPU” approaches are likely to be impractical – as typically such hardware is or-
ders of magnitude slower than main CPUs – any solution needs to deploy SCPUs
efficiently, to defeat statistical correlation attacks on data access patterns.

3 Related Work.

Extensive research has focused on various aspects of DBMS security, including
access control techniques as well as general information security issues [29, 31,
51, 73, 75, 80, 81, 90, 106,107,110,112], many of which are discussed elsewhere in
this book. Additionally, increasing awareness of requirements for data storage
security mechanisms and support can be found with DBMS vendors such as
IBM [10] and Oracle [16].

3.1 Database as a Service

The paradigm of providing a database as a service recently emerged [72] as
a viable alternative, likely due in no small part to the dramatically increasing
availability of fast, cheap networks. Given the global, networked, possibly hostile
nature of the operation environments, security assurances are paramount.

Data Sharing. Statistical and Hippocratic databases aim to address the prob-
lem of allowing aggregate queries on confidential data (stored on trusted servers)
without additional information leaks [24, 25, 50, 51, 89] to the queries. In [125]
Zhang et al. discuss privacy in information sharing scenarios in a distributed
multi-party context, where each party operates a private database. An leak-
age measure is defined for information sharing and several privacy multi-party
protocols deploying commutative encryption are defined.

3.2 XML Sharing

In [30] Bertino et al. discuss a solution for access control to XML data. They
deploy multi-key encryption such that only the appropriate parts of outsourced
XML documents can be accessed by principals. In [32] (also in [28]), they pro-
pose a mechanism deploying watermarking [23, 69, 92, 115, 116, 120] to protect
ownership for outsourced medical data. Similarly, Carminati et al. ensure the
confidentiality of XML in a distributed peer network by using access rights and
encryption keys associated with XML nodes [43]. They enforce the authenticity
and integrity of query answers using Merkle signatures [100]. This complicates
outsourcing of new documents as new Merkle trees will need to be generated. To
ensure query correctness, the server also stores encrypted query templates con-
taining the structure of the original documents. This solution is insecure because
it leaks decryption keys and content access patterns.

3.3 Secure Storage

Encrypted Storage. Blaze’s CFS [34], TCFS [44], EFS [101], StegFS [99], and
NCryptfs [124] are file systems that encrypt data before writing to stable storage.
NCryptfs is implemented as a layered file system [74] and is capable of being
used even over network file systems such as NFS. SFS [70] and BestCrypt [82]
are device driver level encryption systems. Encryption file systems and device
drivers protect the confidentiality of data, but do not allow for efficient queries,
search, correctness, or access privacy assurances.
Integrity-Assured Storage. Tripwire [84,85] is a user level tool that verifies
stored file integrity at scheduled intervals of time. File systems such as I3FS [83],
GFS [62], and Checksummed NCryptfs [119] perform online real-time integrity
verification. Venti [109] is an archival storage system that performs integrity
assurance on read-only data. SUNDR [91] is a network file system designed to
store data securely on untrusted servers and allow clients to detect unauthorized
accesses as long as they see each other’s file modifications.

3.4 Searches on Encrypted Data

Song et al. [121] propose a scheme for performing simple keyword search on en-
crypted data in a scenario where a mobile, bandwidth-restricted user wishes to
store data on an untrusted server. The scheme requires the user to split the data
into fixed-size words and perform encryption and other transformations. Draw-
backs of this scheme include fixing the size of words, the complexities of encryp-
tion and search, the inability of this approach to support access pattern privacy,
or retrieval correctness. Eu-Jin Goh [64] proposes to associate indexes with doc-
uments stored on a server. A document’s index is a Bloom filter [35] containing a
codeword for each unique word in the document. Chang and Mitzenmacher [46]
propose a similar approach, where the index associated with documents consists
of a string of bits of length equal to the total number of words used (dictionary
size). Boneh et al. [36] proposed an alternative for senders to encrypt e-mails
with recipients’ public keys, and store this email on untrusted mail servers. They
present two search protocols: (1) a non-interactive search-able encryption scheme
based on a variant of the Diffie-Hellman problem that uses bilinear maps on el-
liptic curves; and (2) a protocol using only trapdoor permutations, requiring a
large number of public-private key pairs. Both protocols are computationally ex-
pensive. Golle et al. [66] extend the above idea to conjunctive keyword searches
on encrypted data. They propose two solutions. (1) The server stores capabilities
for conjunctive queries, with sizes linear in the total number of documents. They
claim that a majority of the capabilities can be transferred offline to the server,
under the assumption that the client knows beforehand its future conjunctive
queries. (2) Doubling the size of the data stored by the server, which reduces the
communication overheads between clients and servers significantly. The scheme
requires users to specify the exact positions where the search matches have to
occur, and hence is impractical. Brinkman et al. [38] deploy secret splitting of
polynomial expressions to search in encrypted XML.

References

1. Activehost.com Internet Services. Online at http://www.activehost.com.

2. Adhost.com MySQL Hosting. Online at http://www.adhost.com.

3. Alentus.com Database Hosting. Online at http://www.alentus.com.

4. Datapipe.com Managed Hosting Services. Online at http://www.datapipe.com.

5. Discountasp.net Microsoft SQL Hosting. Online at http://www.discountasp.

net.

6. Gate.com Database Hosting Services. Online at http://www.gate.com.

7. Hostchart.com Web Hosting Resource Center. Online at http://www.hostchart.
com.

8. Hostdepartment.com MySQL Database Hosting. Online at http://www.

hostdepartment.com/mysqlwebhosting/.

9. IBM Data Center Outsourcing Services. Online at http://www-1.ibm.com/

services/.

10. IBM Data Encryption for DB2. Online at http://www.ibm.com/software/data/
db2.

11. Inetu.net Managed Database Hosting. Online at http://www.inetu.net.

12. Mercurytechnology.com Managed Services for Oracle Systems. Online at http:

//www.mercurytechnology.com.

13. Neospire.net Managed Hosting for Corporate E-business. Online at http://www.
neospire.net.

14. Netnation.com Microsoft SQL Hosting. Online at http://www.netnation.com.

15. Opendb.com Web Database Hosting. Online at http://www.opendb.com.

16. Oracle: Database Encryption in Oracle 10g. Online at http://www.oracle.com/
database.

17. The IBM WebSphere Information Integrator. Online at http://www.ibm.com/

software/data/integration.

18. IBM 4758 PCI Cryptographic Coprocessor. Online at http://www-03.ibm.com/

security/cryptocards/pcicc/overview.shtml, 2006.

19. IBM 4764 PCI-X Cryptographic Coprocessor (PCIXCC). Online at http:

//www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml, 2006.

20. IBM Common Cryptographic Architecture (CCA) API. Online at http://

www-03.ibm.com/security/cryptocards//pcixcc/overcca.shtml, 2006.

21. IBM Cryptographic Hardware. Online at http://www-03.ibm.com/security/

products/, 2006.

22. Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus
for access control in distributed systems. ACM Trans. Program. Lang. Syst.,
15(4):706–734, 1993.

23. Andre Adelsbach and Ahmad Sadeghi. Advanced techniques for dispute resolv-
ing and authorship proofs on digital works. In Proceedings of SPIE Electronic
Imaging, 2003.

24. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippo-
cratic databases. In Proceedings of the International Conference on Very Large
Databases VLDB, pages 143–154, 2002.

25. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proceedings of the ACM SIGMOD, pages 439–450, 2000.

26. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incre-
mentality at reduced cost. In Proceedings of EuroCrypt, 1997.

27. Steven M. Bellovin. Spamming, phishing, authentication, and privacy. Commu-
nications of the ACM, 47(12):144, 2004.

28. E. Bertino. Data hiding and security in an object-oriented database system. In
Proceedings of the 8th IEEE International Conference on Data Engineering, 1992.

29. Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti.
Author-X: A Java-Based System for XML Data Protection. In IFIP Workshop
on Database Security, pages 15–26, 2000.

30. Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key management
scheme for secure broadcasting of xml documents. In Proceedings of the 9th ACM
conference on Computer and communications security, pages 31–40, 2002.

31. Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization
mechanism for relational data management systems. ACM Transactions on In-
formation Systems, 17(2), 1999.

32. Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H. Deng. Privacy and
ownership preserving of outsourced medical data. In Proceedings of the Interna-
tional Conference on Data Engineering, 2005.

33. Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva,
and Moti Yung. The kryptoknight family of light-weight protocols for authenti-
cation and key distribution. IEEE/ACM Trans. Netw., 3(1):31–41, 1995.

34. M. Blaze. A Cryptographic File System for Unix. In Proceedings of the first ACM
Conference on Computer and Communications Security, pages 9–16, Fairfax, VA,
1993. ACM.

35. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

36. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Proceedings of Eurocrypt 2004, pages 506–522. LNCS
3027, 2004.

37. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In EuroCrypt, 2003.

38. R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching in
encrypted data. In Secure Data Management, 2004.

39. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems principles,
pages 1–13, New York, NY, USA, 1989. ACM Press.

40. C. Cachin, S. Micali, and M. Stadler. Computationally private information re-
trieval with polylog communication. In Proceedings of EUROCRYPT, 1999.

41. C. Cachin, S. Micali, and M. Stadler. Private Information Retrieval with Polylog-
arithmic Communication. In Proceedings of Eurocrypt, pages 402–414. Springer-
Verlag, 1999.

42. Bogdan Carbunar and Radu Sion. Arbitrary-Predicate Joins for Outsourced Data
with Privacy Assurances, 2006. Stony Brook Network Security and Applied Cryp-
tography Lab Tech Report 2006-07.

43. B. Carminati, E. Ferrari, and E. Bertino. Assuring security properties in third-
party architectures. In Proceedings of International Conference on Data Engi-
neering (ICDE), 2005.

44. G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The Design and Imple-
mentation of a Transparent Cryptographic Filesystem for UNIX. In Proceedings
of the Annual USENIX Technical Conference, FREENIX Track, pages 245–252,
Boston, MA, June 2001.

45. Y. Chang. Single-Database Private Information Retrieval with Logarithmic Com-
munication. In Proceedings of the 9th Australasian Conference on Information
Security and Privacy ACISP. Springer-Verlag, 2004.

46. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. Cryptology ePrint Archive, Report 2004/051, 2004. http://

eprint.iacr.org/.

47. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In IEEE Symposium on Foundations of Computer Science, pages 41–50,
1995.

48. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In Proceedings of FOCS. IEEE Computer Society, 1995.

49. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private in-
formation retrieval. J. ACM, 45(6):965–981, 1998.

50. Chris Clifton, Murat Kantarcioglu, AnHai Doan, Gunther Schadow, Jaideep
Vaidya, Ahmed Elmagarmid, and Dan Suciu. Privacy-preserving data integra-
tion and sharing. In The 9th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, pages 19–26. ACM Press, 2004.

51. Chris Clifton and Don Marks. Security and privacy implications of data mining.
In Workshop on Data Mining and Knowledge Discovery, pages 15–19, Montreal,
Canada, 1996. Computer Sciences, University of British Columbia.

52. CNN. Feds seek Google records in porn probe. Online at http://www.cnn.com,
January 2006.

53. Premkumar T. Devanbu, Michael Gertz, April Kwong, Chip Martel, G. Nuckolls,
and Stuart G. Stubblebine. Flexible authentication of XML documents. In ACM
Conference on Computer and Communications Security, pages 136–145, 2001.

54. Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine.
Authentic third-party data publication. In IFIP Workshop on Database Security,
pages 101–112, 2000.

55. W. Du and M. J. Atallah. Protocols for secure remote database access with
approximate matching. In Proceedings of the 1st ACM Workshop on Security and
Privacy in E-Commerce, 2000.

56. Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van
Doorn, Sean W. Smith, and Steve Weingart. Building the ibm 4758 secure copro-
cessor. Computer, 34(10):57–66, 2001.

57. Einar Mykletun and Maithili Narasimha and Gene Tsudik. Signature Bouquets:
Immutability for Aggregated/Condensed Signatures. In Proceedings of the Eu-
ropean Symposium on Research in Computer Security ESORICS, pages 160–176,
2004.

58. Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. In ICALP
’01: Proceedings of the 28th International Colloquium on Automata, Languages
and Programming,, pages 927–938, 2001.

59. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In In Advances in Cryptology EUROCRYPT, pages 1–19, 2004.

60. Irini Fundulaki and Maarten Marx. Specifying access control policies for xml
documents with xpath. In The ACM Symposium on Access Control Models and
Technologies, pages 61–69. ACM Press, 2004.

61. Gartner, Inc. Server Storage and RAID Worldwide. Technical report, Gartner
Group/Dataquest, 1999. www.gartner.com.

62. S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. In Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03),
pages 29–43, Bolton Landing, NY, October 2003. ACM SIGOPS.

63. Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikinen. On private
scalar product computation for privacy-preserving data mining. In ICISC, pages
104–120, 2004.

64. E. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

65. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
66. P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over

encrypted data. In Proceedings of ACNS, pages 31–45. Springer-Verlag; Lecture
Notes in Computer Science 3089, 2004.

67. Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In Pro-
ceedings of the 2001 Conference on Topics in Cryptology, pages 425–440. Springer-
Verlag, 2001.

68. Li Gong. Efficient network authentication protocols: lower bounds and optimal
implementations. Distrib. Comput., 9(3):131–145, 1995.

69. David Gross-Amblard. Query-preserving watermarking of relational databases
and xml documents. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 191–201, New
York, NY, USA, 2003. ACM Press.

70. P. C. Gutmann. Secure filesystem (SFS) for DOS/Windows. www.cs.auckland.

ac.nz/∼pgut001/sfs/index.html, 1994.
71. H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted

data in the database-service-provider model. In Proceedings of the ACM SIGMOD
international conference on Management of data, pages 216–227. ACM Press,
2002.

72. H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing database as a service. In
IEEE International Conference on Data Engineering (ICDE), 2002.

73. J. Hale, J. Threet, and S. Shenoi. A framework for high assurance security of
distributed objects, 1997.

74. J. S. Heidemann and G. J. Popek. File system development with stackable layers.
ACM Transactions on Computer Systems, 12(1):58–89, February 1994.

75. E. Hildebrandt and G. Saake. User Authentication in Multidatabase Systems.
In R. R. Wagner, editor, Proceedings of the Ninth International Workshop on
Database and Expert Systems Applications, August 26–28, 1998, Vienna, Austria,
pages 281–286, Los Alamitos, CA, 1998. IEEE Computer Society Press.

76. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range
queries. In Proceedings of ACM SIGMOD, 2004.

77. HweeHwa Pang and Arpit Jain and Krithi Ramamritham and Kian-Lee Tan.
Verifying Completeness of Relational Query Results in Data Publishing. In Pro-
ceedings of ACM SIGMOD, 2005.

78. Piotr Indyk and David Woodruff. Private polylogarithmic approximations and
efficient matching. In Theory of Cryptography Conference, 2006.

79. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Ex-
pressing Authorizations. In IEEE Symposium on Security and Privacy, pages
31–42, Oakland, CA, May 04-07 1997. IEEE Press.

80. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for express-
ing authorizations. In IEEE Symposium on Security and Privacy. Oakland, CA,
pages 31–42, 1997.

81. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework
for enforcing multiple access control policies. In SIGMOD, 1997.

82. Jetico, Inc. BestCrypt software home page. www.jetico.com, 2002.
83. A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel Integrity

Checker and Intrusion Detection File System. In Proceedings of the 18th USENIX
Large Installation System Administration Conference (LISA 2004), pages 69–79,
Atlanta, GA, November 2004. USENIX Association.

84. G. Kim and E. Spafford. Experiences with Tripwire: Using Integrity Checkers
for Intrusion Detection. In Proceedings of the Usenix System Administration,
Networking and Security (SANS III), 1994.

85. G. Kim and E. Spafford. The Design and Implementation of Tripwire: A File Sys-
tem Integrity Checker. In Proceedings of the 2nd ACM Conference on Computer
Commuications and Society (CCS), November 1994.

86. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings of FOCS. IEEE
Computer Society, 1997.

87. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient
for non-trivial single-server private information retrieval. In Proceedings of EU-
ROCRYPT, 2000.

88. Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM Trans. Comput.
Syst., 10(4):265–310, 1992.

89. Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong
Xu, and David J. DeWitt. Limiting disclosure in hippocratic databases. In Pro-
ceedings of the International Conference on Very Large Databases VLDB, pages
108–119, 2004.

90. Li, Feigenbaum, and Grosof. A logic-based knowledge representation for autho-
rization with delegation. In PCSFW: Proceedings of the 12th Computer Security
Foundations Workshop, 1999.

91. J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data Repository
(SUNDR). In Proceedings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004), pages 121–136, San Francisco, CA, December
2004. ACM SIGOPS.

92. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. A robust watermarking scheme for
relational data. In Proceedings of the Workshop on Information Technology and
Systems (WITS), pages 195–200, 2003.

93. H. Lipmaa. An oblivious transfer protocol with log-squared communication. Cryp-
tology ePrint Archive, 2004.

94. Maithili Narasimha and Gene Tsudik. DSAC: integrity for outsourced databases
with signature aggregation and chaining. Technical report, 2005.

95. Maithili Narasimha and Gene Tsudik. Authentication of Outsourced Databases
using Signature Aggregation and Chaining. In Proceedings of DASFAA, 2006.

96. E. Mann. Private access to distributed information. Master’s thesis, Technion -
Israel Institute of Technology, 1998.

97. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine. A
general model for authenticated data structures. Technical report, 2001.

98. Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart G. Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21–41, 2004.

99. A. D. McDonald and M. G. Kuhn. StegFS: A Steganographic File System for
Linux. In Information Hiding, pages 462–477, 1999.

100. R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on
Research in Security and Privacy, 1980.

101. Microsoft Research. Encrypting File System for Windows 2000. Technical report,
Microsoft Corporation, July 1999. www.microsoft.com/windows2000/techinfo/

howitworks/security/encrypt.asp.
102. Fabian Monrose and Aviel D. Rubin. Authentication via keystroke dynamics. In

ACM Conference on Computer and Communications Security, pages 48–56, 1997.
103. Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a biometric for

authentication. Future Generation Computer Systems, 16(4):351–359, 2000.
104. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in

outsourced databases. In ISOC Symposium on Network and Distributed Systems
Security NDSS, 2004.

105. Roger M. Needham and Michael D. Schroeder. Using encryption for authentica-
tion in large networks of computers. Commun. ACM, 21(12):993–999, 1978.

106. M. Nyanchama and S. L. Osborn. Access rights administration in role-based
security systems. In Proceedings of the IFIP Workshop on Database Security,
pages 37–56, 1994.

107. Sylvia L. Osborn. Database security integration using role-based access control.
In Proceedings of the IFIP Workshop on Database Security, pages 245–258, 2000.

108. HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge com-
puting. In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, page 560, Washington, DC, USA, 2004. IEEE Computer Society.

109. S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceed-
ings of the First USENIX Conference on File and Storage Technologies (FAST
2002), pages 89–101, Monterey, CA, January 2002. USENIX Association.

110. David Rasikan, Sang H. Son, and Ravi Mukkamala. Support-
ing security requirements in multilevel real-time databases, cite-
seer.nj.nec.com/david95supporting.html, 1995.

111. Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending query
rewriting techniques for fine-grained access control. In Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 551–562.
ACM Press, 2004.

112. Ravi S. Sandhu. On five definitions of data integrity. In Proceedings of the IFIP
Workshop on Database Security, pages 257–267, 1993.

113. B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C.
Wiley & Sons, 1996.

114. Radu Sion. Query execution assurance for outsourced databases. In Proceedings
of the Very Large Databases Conference VLDB, 2005.

115. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Relational data rights protec-
tion through watermarking. IEEE Transactions on Knowledge and Data Engi-
neering TKDE, 16(6), June 2004.

116. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Ownership proofs for cate-
gorical data. IEEE Transactions on Knowledge and Data Engineering TKDE,
2005.

117. Radu Sion and Bogdan Carbunar. Indexed Keyword Search with Privacy and
Query Completeness, 2005. Stony Brook Network Security and Applied Cryptog-
raphy Lab Tech Report 2005-07.

118. Radu Sion and Bogdan Carbunar. On the Computational Practicality of Private
Information Retrieval. In Proceedings of the Network and Distributed Systems
Security Symposium, 2007. Stony Brook Network Security and Applied Cryptog-
raphy Lab Tech Report 2006-06.

119. G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing File System Integrity
Through Checksums. Technical Report FSL-04-04, Computer Science De-
partment, Stony Brook University, May 2004. www.fsl.cs.sunysb.edu/docs/

nc-checksum-tr/nc-checksum.pdf.
120. J. Smith and C. Dodge. Developments in steganography. In A. Pfitzmann, edi-

tor, Proceedings of the third Int. Workshop on Information Hiding, pages 77–87,
Dresden, Germany, September 1999. Springer Verlag.

121. D. Xiaodong Song, D. Wagner, and A. Perrig. Practical techniques for searches on
encrypted data. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security
and Privacy (S&P 2000). IEEE Computer Society, 2000.

122. J. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Proceedings of Asia Crypt, pages 357–371, 1998.

123. Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems.
Computer, 25(1):39–52, 1992.

124. C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient
Cryptographic File System. In Proceedings of the Annual USENIX Technical
Conference, pages 197–210, San Antonio, TX, June 2003. USENIX Association.

125. Nan Zhang and Wei Zhao. Distributed Privacy Preserving Information Sharing.
In Proceedings of the International Conference on Very Large Databases VLDB,
2005.

