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Information is probably the most valuable asset of
humanity today. By enabling comparably cost-free, fast,
and accurate access channels to information in digital
form, computers radically changed the way we think
and express ourselves. As increasingly more of it is
produced, packaged and delivered in digital form in a fast,
networked environment, one of its main features threatens
to become its worst bug: zero-cost verbatim copies. The
inherent ability to produce duplicates of digital Works for
virtually no incurred cost can be now misused for illegal
profit. This dramatically increases the requirement for
an effective rights protection mechanism in the digital
world. Different avenues are available, each with its
own advantages and drawbacks. Enforcement by legal
means is usually ineffective in this new framework, unless

augmented by a digital counter-part such as Information
Hiding. Digital Information Hiding as a method of
Rights Protection (also known as Digital Watermarking),
hides an indelible “rights witness” (watermark) within the
digital Work to be protected, by slightly altering it. The
soundness of such a method relies on the assumption that
(i) the insertion of the mark does not destroy the value of
the Work (i.e. it is still useful for its intended purpose);
and that (ii) it is difficult for a malicious adversary
(Mallory) to remove or alter the mark beyond detection
without destroying the value of the Work. Mallory, and
the ability to resist his attacks (mostly aiming at removing
the embedded watermark) turn out to be one of the major
concerns in the design of a watermarking solution.

There exists a multitude of semantic frameworks for
information processing and distribution. Each distinct
data domain would benefit from the availability of
a suitable watermarking solution. The overwhelming
majority of research efforts in digital watermarking have
been invested in the multimedia data domain (e.g. images,
video and audio) [5] [6]. Very recently, other data domains
have also been considered, such as natural language
[1] and software [4]. In this work we analyze Digital
Information Hiding as a method of Rights Protection
from a higher level, domain-independent perspective. We
propose a theoretical model for Watermarking. We
ask: what are the limits of Watermarking? When
can these be reached? We then propose, design and
analyze watermarking solutions for (i) numeric and
categorical relational data (ii) streams and (iii) arbitrary
semi-structured content.

Model. In [13] we introduce a model for
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Watermarking. We define important concepts including:
usability domain - set of functionals quantifying a digital
Work’s value in terms of its specific use (see Figure
1), watermark - an induced property of a watermarked
Work O′, so rare, that if we consider any other
Work O′′, “close-enough” to the original Work O, the
probability that O′′ exhibits the same property can be
upper-bounded, watermark vulnerability - the ability of
an attack to succeed against a watermarking scheme.
One fundamental difference between watermarking and
generic data hiding resides in the main applicability
and descriptions of the two domains. Data hiding in
general and covert communication in particular, aims
at enabling Alice and Bob to exchange messages in a
manner as resilient and stealthy as possible, through a
medium controlled by evil Mallory. Digital watermarking
is deployed in court by Alice to prove rights over a given
Work, usually in a scenario where Mallory benefits from
using/selling that very same Work or maliciously modified
versions of it. In digital watermarking, the actual value
to be protected lies in the Works themselves whereas
information hiding usually makes use of them as simple
value “transporters”. Rights assessment can be achieved
by demonstrating that a particular Work exhibits a
rare property (read “hidden message” or “watermark”),
usually known only to Alice (with the aid of a “secret”
- read “watermarking key”). For court convince-ability
purposes this property needs to be so rare that if one
considers any other random Work “similar enough” to
the one in question, this property is “very improbable”
to apply (i.e. bound rate of false-positives). This defines
a main difference from steganography: for its purpose,
the specifics of the property (e.g. watermark message)
are irrelevant as long as Alice can prove “convincingly”
it is she who embedded/induced it to the original
(non-watermarked) Work. Thus, in watermarking the
emphasis is on “detection” rather than “extraction”.
Extraction of a watermark is usually a part of the
detection but just complements the process up to the
extent of increasing the ability to convince in court.

Limits. In a seminal paper [9], the main
desiderata and features of multimedia watermarking are
outlined generically: it should not degrade the perceived
quality of the marked Work; the ability to detect the
presence/content of a watermark should require the
knowledge of a secret (key); different watermarks in the
same Work should not interfere with each other; collusion
attacks should not be possible; the watermark should
survive any value-preserving transformation.

A common un-proved consensus has been implicitly
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Figure 1: (a) A 2-dimensional view of an usability space. A
point uniquely identifies a Work (e.g. coordinates in this space
are DCT coefficients). Watermarking is a translation from O
to its “watermarked” version, O′. (b) Usability vicinities of a
certain Work O ∈

�
for a given marking algorithm. Udata is

defined by the actual data type of the usability metrics. Umax

is the maximal allowable usability vicinity with respect to the
associated usability domain(s) (e.g. Human Visual System).
Uwm is the vicinity in which objects exhibit the watermark.

assumed, namely that watermarking indeed lives up
to its claimed features. [5, 6] present excellent area
surveys as well as comprehensive examples of algo-
rithms for watermarking (mainly) multi-media Works.
We know now that arbitrary large collusion attacks
cannot be defeated against [2]. Moreover, while
most watermarking algorithms prove to be safe against
a considered set of value-preserving transformations
(e.g. JPEG compression) they certainly fail with
respect to many others. This shortcoming can be
directly traced back to the relativity of the “value”
and “quality” concepts. Several (mostly experimental)
efforts explored the ability to analyze and quantify the
“goodness” of watermarking applications, resulting in
various watermark benchmarking “suites” (e.g. Stir-
Mark: http://www.cl.cam.ac.uk/ f̃app2/ watermarking/
stirmark, CheckMark: http://watermarking. unige.ch/
Checkmark, OptiMark: http://poseidon.csd.auth.gr/ op-
timark) mainly for multimedia (i.e. images). Additional
research [3, 7, 8] aimed at analyzing concepts such as
available bandwidth in the broader area of information
hiding from a signal-processing, information-theoretic
perspective, focusing mainly on various multimedia
techniques. One particular question becomes of interest,
namely: Are there theoretically assessable bounds on

watermark vulnerability with respect to an arbitrary

watermarking method? In other words, what is the
inherent safety/vulnerability of a generic (i.e. with a
minimum amount of assumptions, without considering
implementation particularities) watermarking algorithm?
An answer to this question might afterward derive real-life
recommendations for fine-tuning actual algorithms to
increase their marking resilience.

In [11] we explore these and other issues for a broad
class of watermarking algorithms. We discover that
indeed there exist such limitations. More specifically,
we identify an important convince-ability trade-off: the
more “convincing” in court a watermarking method

is, the higher the probability of success of a perfect
attack. Moreover we further derive the watermarking

optimality principle that states that the vulnerability of a
watermarking scheme (in our considered class) is likely
minimized when it yields watermarked results on the
boundary of the maximum allowable usability vicinity of
the original un-watermarked Works.
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Figure 2: (a) No matter how sophisticated the watermarking
method, there exists a random attack with a success
probability of 33% and above (although we might not know
what the attack is). It can be seen that a lower ε value (more
convincing in court) yields an even higher upper bound on
attack success probability (2D cut through (b)). (b) The 3D
evolution of Psa with varying ε and Ra/∆umax. For notations
see [11].

From Mallory’s perspective this is good news. It
turns out that it is possible to defeat watermarking
algorithms with a surprisingly high success rate, without
any additional (insider’s) knowledge. This is an inherent
limitation of watermarking in general. Any additional
knowledge can only improve on this probability. This is
the case even if these algorithms conform to the optimality
principle. Also, there seems to exist a “sweet spot” in
which the probability of a successful attack is maximized.
Mallory could make use of this by fine-tuning.

In summary, in this contribution we identified and ana-
lyzed inherent limitations of watermarking, including the
trade-off between two important watermarking properties:
being enough “convincing” in court while at the same time
surviving a set of attacks. In the attempt to become as
court convincing as possible, a watermarking application
becomes more fragile to attacks aimed at removing the
watermark, while preserving the value of the Work. It
becomes thus necessary characterized by a significant
non-zero probability of being successfully attacked. We
discovered an optimality principle (quantified and proved
for a broad class of algorithms) that postulates the
minimization of vulnerability in specific data points.

Numeric Relational Data. In [15] we introduce a
solution for relational database content rights protection
through watermarking. Rights protection for relational
data is of ever increasing interest, especially considering
areas where sensitive, valuable content is to be outsourced.
A good example is a data mining application, where
data is sold in pieces to parties specialized in mining it.
Our solution addresses important attacks, such as subset
selection, linear data changes, random alteration attacks
and data loss. We introduce wmdb.*, a proof-of-concept
implementation and its application to real life data,



namely in watermarking the outsourced Wal-Mart sales
data available at our institute.

The main challenges in this new domain derive from
the fact that, since the associated data types do not have
fixed, well defined semantics (as compared to multimedia)
and may be designed for machine ingestion, identifying
the available “bandwidth” for watermarking becomes as
important as the actual encoding algorithms. Remember
that one of the desiderata of watermarking is to insert an
indelible mark in the object such that the insertion of the
mark does not destroy the value of the object. Clearly,
the notion of value or utility of the object is central to
the watermarking process. This is closely related to the
type of data and its intended use. For example, in the
case of software the value may be in ensuring equivalent
computation, and for text it may be in conveying the
same meaning (i.e. synonym substitution is acceptable).
Similarly, for a collection of numbers, the utility of the
data may lie in the actual or the relative values of the
numbers, or in the distribution (e.g. normal with a certain
mean). Because, one can always identify some use of the
data that would be affected by even a minor change to
any portion of it, it becomes necessary that the intended
purpose of the data to be preserved is identified and
integrated in the watermarking process.

Our solution starts by receiving as user input a reference
to the relational data to be rights-protected, a watermark
to be embedded as a copyright proof, a secret key used
to protect the embedding and a set of data quality
constraints to be preserved in the result. It then proceeds
to watermark the data while continuously assessing
data quality, potentially backtracking and undo-ing
undesirable alterations that do not preserve data quality.
Watermark embedding is composed of two main parts: in
the first stage, the input data set is securely partitioned
into subsets of items; the second stage then encodes one
bit of the watermark into each subset. If more subsets
(than watermark bits) are available, error correction is
deployed to result in an increasingly resilient embedding.
The algorithms prove to be resilient to important classes
of attacks, including subset selection, linear data changes
and random alterations.

The system design, including the ability to evaluate data
quality constraints through runtime plugins, is outlined in
Figure 3 (a). To exemplify the resilience of our method
(e.g. to random alterations), in Figure 3 (b), a comparison
is made between the case of uniformly distributed (i.e.
values are altered randomly between 100% and 120% of
their original value) and fixed alterations (i.e. values are
increased by exactly 20%). In the case of fixed alterations
the behavior demonstrates the self-healing ability of our
method: as more and more of the tuples (past the
50% mark) are altered linearly, the watermark distortion
decreases. For example when over 95% of the data is
modified consistently and linearly the watermark suffers
only 7% alterations.

Another important experiment analyzes the ability
to preserve classes in the resulting watermarked object
Classification is extremely relevant in areas such as
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Figure 3: (a) The wmdb.* package. (a) Random attack
(non-zero average) on a normally distributed data set.
(b) Impact of classification preservation on the available
watermarking bandwidth.

data mining and we envision that many of the actual
deployment scenarios for our relational watermark-
ing application will require classification preservation.
Classification preservation deals with the problem of
propagation of the classes occurring in the original (input)
data in the watermarked (output) version of the data.
It provides thus the assurance that the watermarked
version still contains most (or within a certain allowed
percentage) of the original classes. Figure 3 (c) depicts
how classification can be preserved while making optimal
use of the available bandwidth. For example, up to 90%
of the underlying bandwidth can become available for
watermark encoding with a restrictive 6% classification
preservation goodness.

These results confirm the adaptability of our wa-
termarking algorithm. As classification tolerance is
increased, the application adapts and makes use of an
increased available bandwidth for watermark encoding.
This also show that classification preservation is com-
patible with our distribution-based encoding method, an
important point to be made, considering the wide range
of data-mining applications that could naturally benefit
from watermarking ability.

Thus, main contributions of this work include: (i)
a resilient watermarking method for relational data,
(ii) a technique for enabling user-level run-time control
over properties that are to be preserved as well as the
degree of change introduced, (iii) a complete, user-friendly
implementation for numeric relational data, (iv) the
deployment of the implementation on real data, in
watermarking the Wal-Mart Sales Database and the
analysis thereof.

Categorical Data. While in [15] we propose and an-
alyze the issue of rights protection for numeric relational
data, applications handling other types of relational data
would certainly benefit from a watermarking solution for
these data types. In [10] we introduce a novel method
of watermarking categorical data. We discover new
watermark embedding channels for relational data with
categorical types. We design novel watermark encoding
algorithms and analyze important theoretical bounds
including mark vulnerability. While fully preserving data
quality requirements, our solution survives important
attacks, such as subset selection and random alterations.
Mark detection is fully “blind” in that it doesn’t require
the original data, an important characteristic especially
in the case of massive data. We propose various



improvements and alternative encoding methods. We
perform validation experiments by watermarking the
outsourced Wal-Mart sales data available at our institute.
We prove (experimentally and by analysis) our solution
to be extremely resilient to both alteration and data loss
attacks, for example tolerating up to 80% data loss with
a watermark alteration of only 25%.

Important new challenges are associated with this
domain. One cannot rely on “small” alterations to the
data in the embedding process. Any alteration is going
to necessarily be significant. The discrete characteristics
of the data require discovery of fundamentally new
bandwidth channels and associated encoding algorithms.
Our method proves to be resilient to important attacks,
including subset selection and random alterations.

Our solution starts by discovering two domain-specific
watermark embedding channels, namely (i) the inter-

attribute associations and (ii) the value occurrence

frequency-transform, (attribute frequency histogram).
Next, embedding methods able to resiliently hide
information in these channels are designed. The main
method starts with an initial user-level assessment step
in which a set of attributes to be watermarked are
selected. Next, watermark encoding proceeds for each
attribute pair (K, A) in the considered attribute set, by
selecting a subset of “fit” tuples (determined directly
by the association between A and K). These tuples
are then considered for mark encoding. Mark encoding
alters the tuple’s value according to a secret criteria
that induces a statistical bias in the distribution for that
tuple’s altered value. The mark decoding process relies
on discovering this induced statistical bias. Yet another
embedding method is available to counter extreme vertical
partitioning attacks in which only a single attribute A

is preserved in the result. If, intuitively, for massive
data sets, the number of possible discrete values for A

is much smaller than the data set size, then A, contains
many duplicate values. There is probably very little
value associated with knowing the set of possible values
of A. The main value in this scenario (in Mallory’s eyes)
is (arguably) to be found in one of the only remaining
characteristic properties, namely the value occurrence
frequency distribution for each possible value of A. If we
could devise an alternative watermark encoding method
for this set we would be able to associate rights also
to this aspect of the data, thus surviving this extreme
partitioning attack. In [12] we introduced a watermarking
method for numeric sets that is able to minimize the
absolute data alteration in terms of distance from the
original data set. We propose to apply this method here
to embed a mark in the occurrence frequency distribution
domain. One concern we should consider is the fact
that in the categorical domain we are usually interested
in minimizing the number of data items altered whereas
in the numeric domain we aim to minimize the absolute
data change. It is fortunate that, because now we have
numeric values modeling occurrence frequency, a solution
minimizing absolute data change in this (frequency)

domain naturally minimizes the number of items altered
in the categorical value domain.
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Figure 4: (a) More available bandwidth (decreasing e) results
in a higher attack resilience. (b) The watermark degrades
almost linearly with increasing data loss.

The experimental results included an analysis of the
relationship between the amount of alterations required
in the watermarking phase and a minimum guaranteed
watermark resilience. It can be seen in Figure 4 (a)
that with a decreasing number of encoding alterations
(decreasing e) the vulnerability to random alteration
attacks increases accordingly. This illustrates the
trade-off between the requirement to be resilient and the
preservation of data quality (e.g. fewer alterations). An
experiment analyzing resilience to data loss is depicted
in Figure 4. We observe here the compensating effect of
error correction. Compared to data alteration attacks, the
watermark survives even better with respect to the attack
size (in this case loss of data).

Thus, the main contributions of this effort include:
(i) the proposal and definition of the problem of
watermarking categorical data, (ii) the discovery and
analysis of new watermark embedding channels for
relational data with categorical types, (iii) the design of
novel associated encoding algorithms.

Streams. Often, streaming information is available on
the basis of a non-exclusive, single-use customer license.
One major concern, especially given the digital nature
of the valuable stream, is the ability to easily record
and potentially “re-play” parts of it in the future. If
there is value associated with such future re-plays, it
could constitute enough incentive for a malicious customer
(Mallory) to duplicate segments of such recorded data,
subsequently re-selling them for profit. Being able to
protect against such infringements becomes a necessity.

In [16] we introduce the issue of rights protection for
streaming data through watermarking. We propose a
solution and analyze its resilience to various types of
attacks as well as expected domain-specific alterations,
such as sampling and summarization. We implement
a proof of concept software (wms.*) and perform
experiments to assess these resilience levels in practice.
Our method proves to be well suited for this new
domain. For example, we can recover an over 97%
confidence watermark from a sampled (e.g. less than 8%)
stream. Similarly, our encoding ensures survival to stream
summarization (e.g. 20%) and random alteration attacks
with very high confidence levels, often above 99%.

To the best of our knowledge, the issue of rights



protection for streams has not been addressed. Streaming
data sources represent an important class of emerging
applications These applications produce a virtually
endless stream of data that is too large to be stored
in a given system. Recent efforts in the broader area
of streaming data, deal with the database challenges
of its management. Existing work on discrete data
watermarking relies upon the availability of the entire
dataset during the watermarking process. While this
is generally a reasonable assumption, it does not hold
true for the case of streaming data. Moreover, since
the streamed data is typically available as soon as
it is generated, it is desirable that the watermarking
process be applied immediately on subsets of the data.
Due to this limitation, earlier work on watermarking
relational databases is not applicable to streams. Also,
while there seem to be similarities between watermarking
multimedia (in particular audio) streams and sensor data,
at a closer inspection these similarities prove to be
just appearances. A multitude of differences are to be
found between the two frameworks mainly deriving from
different data models and associated semantic scopes.
While in sensor data, summarization and sampling are
routinely expected natural operations, audio streams are
not to be summarized, and sampling in the audio domain
entails an entirely different process. Data quality to
be preserved in audio streaming is usually related to
the human auditory system and its limitations. Any
watermark-related alteration can be induced as long as the
stream still “sounds” good In the case of sensor streams
(e.g. temperature) on the other hand, many scenarios
involve widely different quality metrics, that often need
to also consider overall stream characteristics 1.

A set of novel challenges present themselves in this
domain. Any stream processing performed is necessarily
both time and space bound. The time bounds derive
from the fact that the processing has to keep up with
incoming data. The space bounds are referring to the
finiteness of any storage mechanism, when compared with
the virtually infinite nature of streaming data. At the
same time, any quality preservation constraints can be
formulated only in terms of the current available data
window; including any history information will come
at the expense of being unable to store as much new
incoming data. Moreover, the effectiveness of any rights
protection method is directly related to its ability to
survive normal domain specific transformations as well
as malicious attacks. In this framework we deal with
the following: (A1) summarization, (A2) sampling, (A3)
segmentation (we would like to be able to recover a
watermark from a finite segment of data drawn from the
stream), (A4) scaling (there might be value in actual data

trends, that Mallory could still exploit, by scaling the
initial values), (A5) addition of stream values and (A6)
random alterations.

At an overview level, watermark embedding proceeds

1e.g. the total alteration introduced per data item should not

exceed a certain threshold.

as follows: (a) first a set of “major” data extremes
(actual stream max/min values) are identified in the
data stream, extremes that feature the property that
they (or a majority thereof) can be recovered after a
suite of considered alterations (possibly attacks) such
as (random) sampling and summarization. Next (b) a
certain criteria is used to select some of these extremes
as recipients for parts of the watermark. Finally (c),
the selected ones are used to define subsets of items
considered for 1-bit watermark embedding of bits of the
global watermark. The fact that these extremes can be
recovered ensures a consistent overlap (or even complete
identity) between the recovered subsets and the original
ones (in the un-altered data). In the watermark detection
process (d) all the extremes in the stream are identified
and the selection criteria in step (b) above is used once
again to identify potential watermark recipients. For each
selected extreme, (e) its corresponding 1-bit watermark
is extracted and ultimately the global watermark is
gradually re-constructed, by possibly also using an error
correction mechanism. Thus, one of the main ideas behind
our solution is the use of extreme values in the stream’s
evolution as watermark bit-carriers. The intuition here
lies in the fact that much of the stream value lies in exactly
its fluctuating behavior and the associated extremes, more
likely to be preserved in value-preserving, domain-specific
transforms.

We performed experiments on watermark survival to a
variety of transformations, including random alterations
and combined sampling and summarization. In Figure
5 (a), random alterations are illustrated. Naturally,
an increasing level of distortion results in decreasing
detection. Nevertheless, for 50% of the data altered within
10% of the original value, we still detect a watermark
bias of roughly 25 bits, yielding a very convincing
false- positive rate of less than “one in thirty million”.
In Figure 5 (b) we outline the impact of a combined

transformation (sampling and summarization) on the
watermark embedding. Because of the nature of both
transformations and of the resilience featured in each case,
the combination seems to be survived well. For example,
25% sampling, followed by 25% summarization still yields
a watermark bias of up to 20, corresponding to a favorable,
low false-positive rate of “one in a million”.
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Figure 5: (a) Watermark survival to epsilon-attacks. (b)
Watermark survival to combined sampling and summarization.

Thus, the main contributions of this effort include:
(i) the proposal and definition of the problem of
watermarking streams, (ii) the discovery and analysis



of new watermark embedding channels for such data,
(iii) the design of novel associated encoding algorithms,
(iv) a proof of concept implementation of the algorithms
and (v) their experimental evaluation. The algorithms
introduced here prove to be resilient to important
domain-specific classes of attacks, including stream
re-sampling, summarization (replacing a stream portion
by its average value) and random changes.

Structures. In [14] we discuss the watermarking
of abstract structured aggregates of multiple types of
content, such as multi-type/media documents. These
semi-structures can be usually represented as graphs and
are characterized by value lying both in the structure and

in the individual nodes. Example instances include XML
documents, complex web content, workflow and planning
descriptions. We propose a scheme for watermarking
abstract semi-structures and discuss its resilience with
respect to attacks. While content specific watermarking
deals with the issue of protecting the value in the
structure’s nodes, protecting the value pertaining to the
structure itself is a new, distinct challenge. Nodes in
semi-structures are value-carrying, thus a watermarking
algorithm could make use of their encoding capacity by
using traditional watermarking. For example if a node
contains an image then image watermarking algorithms
can be deployed for that node to encode parts of the global
watermark. Also, given the intrinsic value attached to
it, the graph that “glues” these nodes together becomes
in itself a central element of the watermarking process
that makes use of these two value facets, structural and
node-content.

Multiple challenges are encountered in this framework,
mostly derived from the requirement to survive domain-
specific transformations and likely attacks by Mallory,
including: elimination of value-“insignificant” nodes (A1),
elimination of inter node relations (A2), value preserving
graph partitioning into independent usable partitions
(A3), modification of node content, within usability
vicinity (A4), addition of value insignificant nodes (A5).
Our solution is based on a canonical labeling algorithm
that self-adjusts to the specifics of the content. Labeling
is tolerant to a significant number of graph attacks
(“surgeries”) and relies on a complex “training” phase at
embedding time in which it reaches an optimal stability
point with respect to these attacks. We perform attack
experiments on the introduced algorithms under different
conditions with very encouraging results. In Figure 6 we
show the watermark behavior to data alteration in the
case of a random artificially generated structure with 32
nodes and 64 edges. The embedded watermark is 8 bits
long. The labeling scheme was trained for 3 surgeries. As
the number of attack surgeries increases, the watermark
degrades slightly. The results are averaged over 10 runs
on the same graph with different random attacks. When
8 attack surgeries are applied to the graph we can still
recover 60-65% of the watermark. One has to consider
also the fact that an attacker is bound not to modify the
structure beyond distortion limits.
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