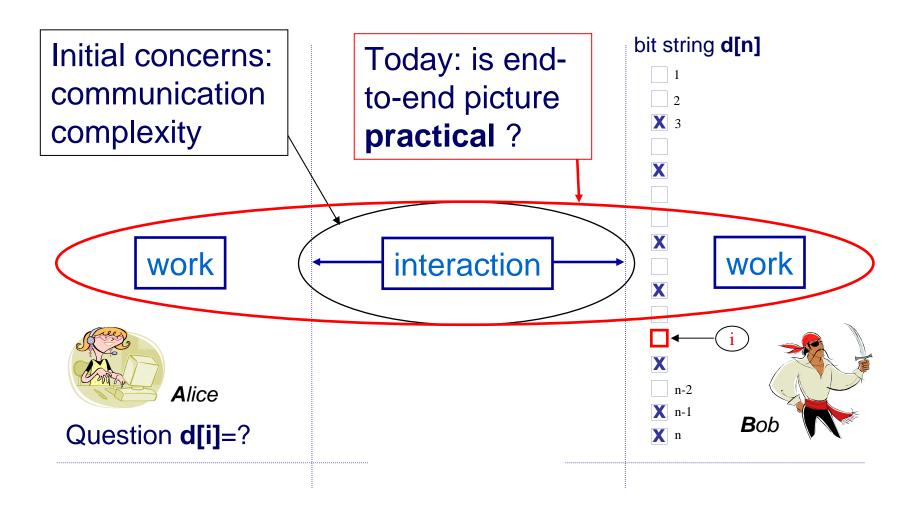
Network Security and Applied Cryptography Laboratory

http://crypto.cs.stonybrook.edu

On the Practicality of PIR


Radu Sion Stony Brook NSAC Lab sion@cs.stonybrook.edu

Carbunar Bogdan Motorola Labs carbunar@motorola.com

ver. 2.1 (2/25/2007) © 2005-07. All Rights Reserved.

Many things.

But often, in real life, these are defined by execution time.

Practicality of Private Information Retrieval (NDSS, February 2006)

Baseline: a cheaper PIR protocol than trivial database transfer (for now !).

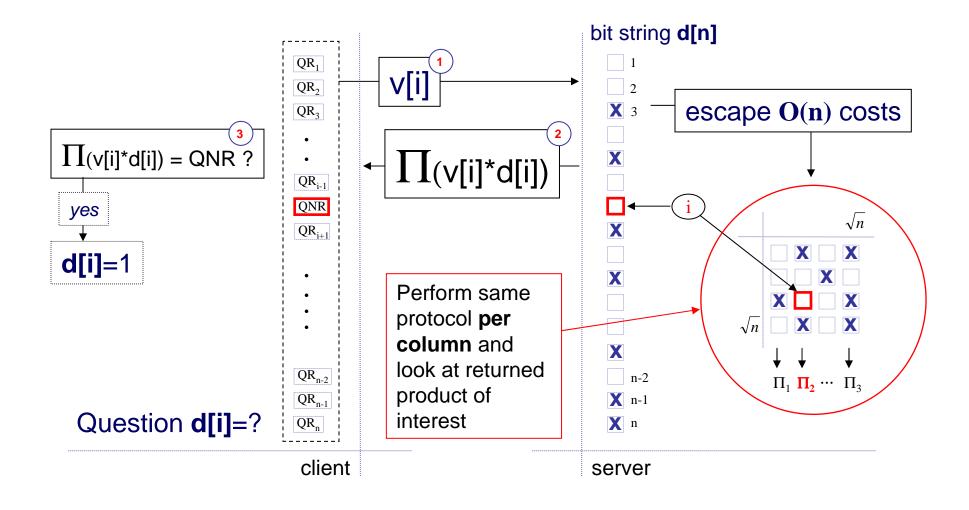
What is cheaper ?

Often, "not slower".

Faster. Not always !

... we choose: E. Kushilevitz and R. Ostrovsky, "Replication is not needed: single database, computationally-private information retrieval", FOCS 1997.

Why?


It is the least *computationally* expensive and arguably the *fastest* of the bunch.

The results can be applied to all 7+ single-server computational protocols we looked at (based on well-established intractability assumptions)

They also apply to any protocol with a per-bit cost > fraction (e.g., 1/10) of the cost of a modular multiplication.

Protocol overview

Stony Brook Network Security and Applied Cryptography Lab

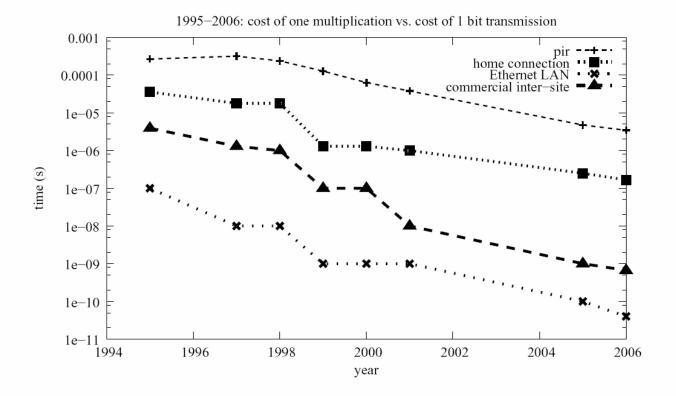
$$T_{pir} = nt_{mul}(|N|) + 2\sqrt{n}(|N|)t_t + \sqrt{n}t_{qrv}(|N|)$$

PIR-favorable simplification: we ignore anything else but the server-side modular multiplication costs.

$$T_{pir} \approx n \times t_{mul}(|N|)$$

Conclusion: PIR is "practical" iff. per-bit serverside complexity is faster than bit transfer.

ĺ	target	1995	2000 - 2010	2011 - 2030	2030-
	bits	768	1024 - 1536	2048	3072


Recommended RSA key sizes.

year	M	В	B_2	B_3
1995	200	0.028	10	0.256
1997	300	0.056	100	0.768
1998	400			1.000
1999	744	0.768	1000	10
2000	1500			
2001	2500	1.000		100
2005	15000	4.000	10000	1000
2006	25000	6.000	10000	1500

Estimated average values for x86 CPU MIPS, end-user home commodity Internet (B), Ethernet LAN (B_2) and commercial high-end inter-site (B_3) bandwidth (Mbps), between 1995 and 2006.

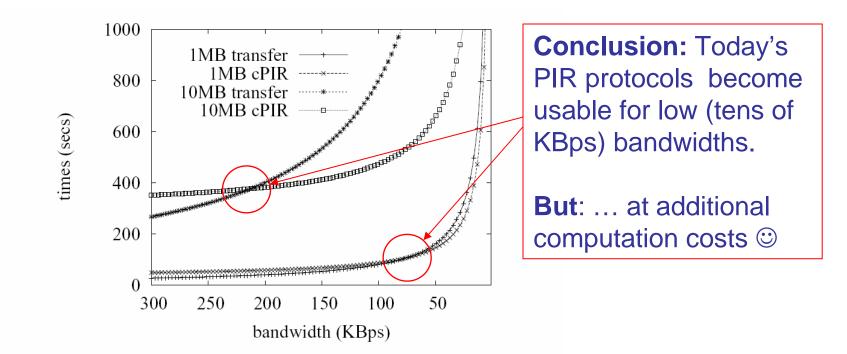
Note: 15MBps/5MBps costs \$29.95/mo.

Practicality of Private Information Retrieval (NDSS, February 2006)

Comparison between the time required to perform PIR and the time taken to transfer the database, between 1995 and 2005. (logarithmic)

Present: Hardware

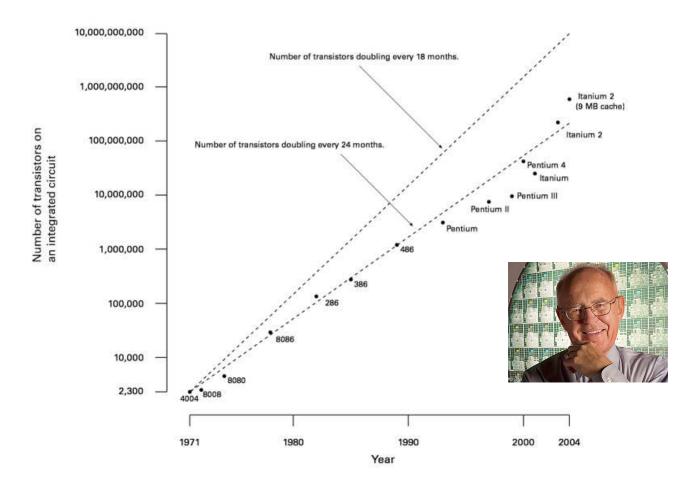
Stony Brook Network Security and Applied Cryptography Lab



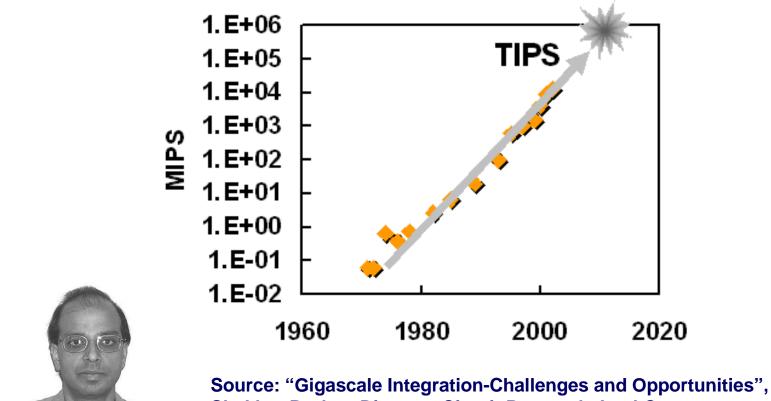
Illustrative baseline. Results hold within orders of magnitude (e.g., if chip would be ten times faster). Wide spread. Fast ALUs. Setup: 3.6GHz, 1GB RAM. 11000 MIPS (Intel).

1024 bit values: **273,000 mod. mul. / sec.** PIR-processing one bit: >>**3700 ns** 10MBps transfer: ~**100-120 ns**

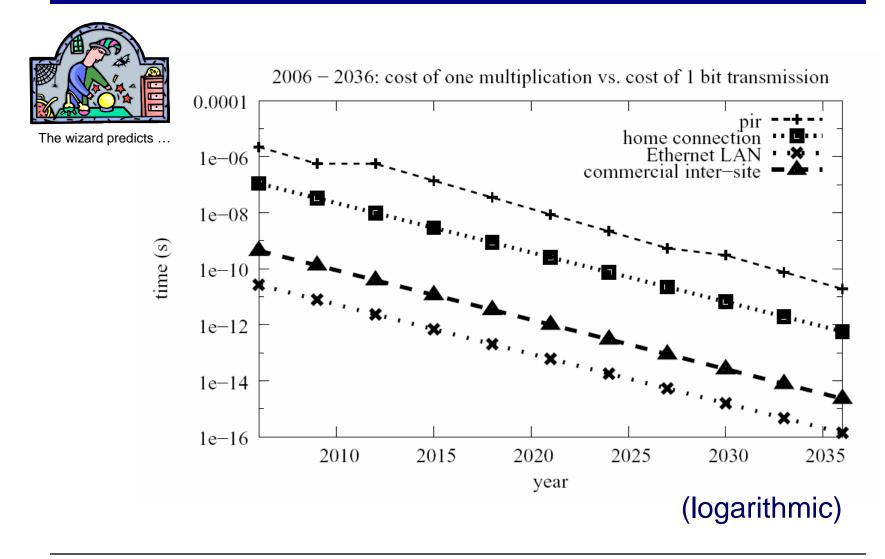
Trivial transfer is 35+ times faster than PIR.


Question: But what about faster hardware ?

Low Bandwidth ($t_{mul} < t_t$, condition (4) does not hold): behavior of execution times for cPIR vs. database transfer times. If its (previously ignored) communication overheads are considered, the bandwidth thresholds below which cPIR becomes useful further decrease.

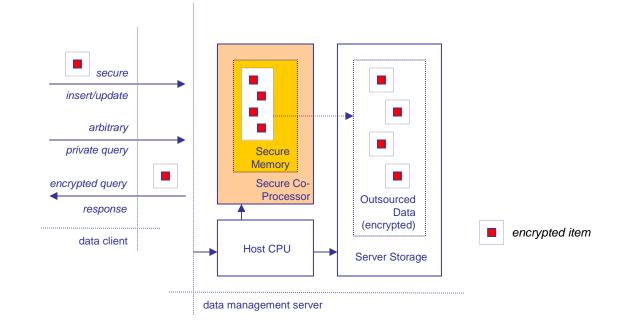

Future: Moore Says 🙂 ...

Stony Brook Network Security and Applied Cryptography Lab


Moore's Law

Practicality of Private Information Retrieval (NDSS, February 2006)

Shekhar Borkar, Director, Circuit Research, Intel Corp.


B's input is X_1, X_2, \ldots, X_N , where each $X_I \in$ $\{0,1\}^m$ and $N=2^\ell$. The receiver A would like to learn X_I ; 1. B prepares ℓ random pairs of keys $(K_1^0, K_1^1), (K_2^0, K_2^1), \dots, (K_\ell^0, K_\ell^1)$ where for all $1 \leq j \leq \ell$ and $b \in \{0,1\}$ each K_i^b is a t-bit key to the pseudo-random function F_K . For all $1 \leq I \leq N$ let $\langle i_1, i_2, \dots i_\ell \rangle$ be the bits of I. B Here do PIR instead: "Naor- $\bigoplus_{j=1}^{\ell} F_{K_i^{i_j}}(I)$. **Pinkas PIR-SPIR reduction**" z. A and D engage in a 1-out-of-2 OT for each $1 \leq j \leq \ell$ on the strings $\langle K_i^0, K_i^1 \rangle$. If A would like to learn X_I she should pick K_{i}^{ij} . [56] M. Naor and B. Pinkas. **Oblivious transfer and** \bigcirc 3. B sends A the strings Y_1, Y_2, \ldots, Y_N . polynomial evaluation. In STOC '99: Proceedings of the thirtyfirst annual ACM symposium on 4. A reconstructs $X_I = Y_I \oplus \bigoplus_{j=1}^{\ell} F_{K_i^{i_j}}(I)$. Theory of computing, pages 245–254, New York, NY, USA, 1999. ACM Press.

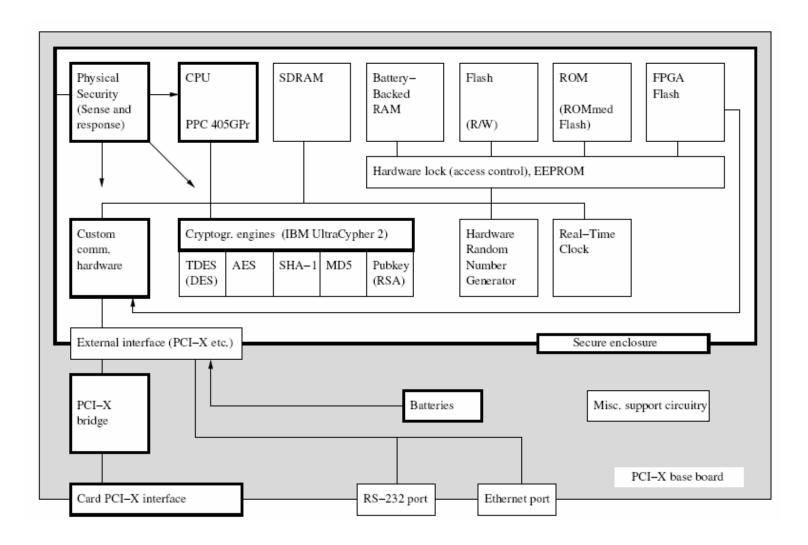
Practicality of Private Information Retrieval (NDSS, February 2006)

- New PIR protocols
 - Gasarch & Yerukhimovich protocol ?!
 - Gentry & Ramzan ?
- Hardware PIR (Sean Smith @ Darthmouth)
- Weaker privacy metrics (statistical)
- Important: use correct baseline for "practical"
 compare with application requirements, not with trivial transfer (e.g., 4TB database – trivial transfer over 100MBps takes 22+ hrs)

Trusted Hardware

Stony Brook Network Security and Applied Cryptography Lab

A secure co-processor on the data management side may allow for significant leaps in expressivity for queries where privacy and completeness assurance are important.



RSA1024 Sign: **848/sec** RSA1024 Verify: **1157/sec** 3DES: **1-8MB/sec** DES: **1-8MB/sec** SHA1: **1-21MB/sec**

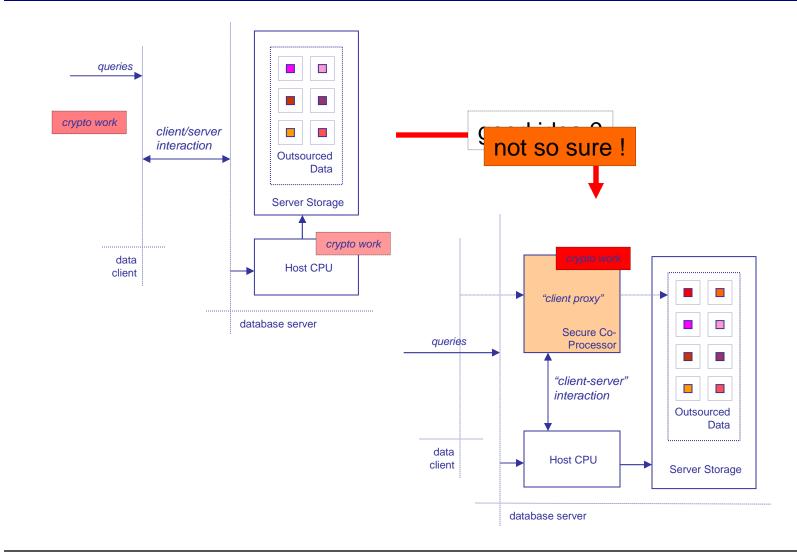
IBM 4764-001: 266MHz PowerPC. 64KB battery-backed SRAM storage. Crypto hardware engines: AES256, DES, TDES, DSS, SHA-1, MD5, RSA. FIPS 140-2 Level 4 certified.

IBM 4764 Architecture

Stony Brook Network Security and Applied Cryptography Lab

Comparison: Pentium 4

Stony Brook Network Security and Applied Cryptography Lab



Illustrative baseline. Pentium 4. 3.4GHz. 1GB RAM. 11000 MIPS. OpenSSL 0.9.7f

DES/CBC: **70MB/sec** RC4: **138MB/sec** MD5: **18-615MB/sec** SHA1: **18-340MB/sec** Modular MUL 1024: **273000/sec** RSA1024 Sign: **261/sec** RSA1024 Verify: **5324/sec** 3DES: **26MB/sec**

Sample DON'T

Stony Brook Network Security and Applied Cryptography Lab

/bin/yes > /dev/lunchtime

Stony Brook Network Security and Applied Cryptography Lab

The *n* bits of the database are organized logically at the server as a bi-dimensional matrix M of size $\sqrt{n} \times \sqrt{n}$. To retrieve bit M(x, y) with computational privacy, the client:

- randomly chooses two prime numbers p and q of similar bit length, computes their product, N = pq and sends it to the server.
- generates \sqrt{n} numbers $s_1, s_2, \ldots, s_{\sqrt{n}}$, such that s_x is a quadratic non-residue (QNR) and the rest are quadratic residues (QR) in \mathbb{Z}_N^* .
- sends $s_1, s_2, \ldots, s_{\sqrt{n}}$ to the server.

For each "column" $j \in (1,\sqrt{n})$ in the $\sqrt{n} \times \sqrt{n}$ matrix, the server:

- computes the product $r_j = \prod_{0 < i < \sqrt{n}} q_{ij}$ where $q_{ij} = s_i^2$ if M(i,j) = 1 and $q_{ij} = s_i$ otherwise ².
- sends $r_1, \ldots, r_{\sqrt{n}}$ to the client

The client then simply checks if r_y is a QR in \mathbb{Z}_N^* which implies M(x, y) = 1, else M(x, y) = 0.