

Towards Practical (?) Private Information Retrieval

Speaker: Giovanni Di Crescenzo

Telcordia Technologies, Piscataway, NJ, USA

E-mail: giovanni@research.telcordia.com

Venue: Second International Conference on Security and Privacy in Communication Networks (SECURECOMM 2006)

What I am really going to tell you

- What Private Information Retrieval (PIR) is
- How important is PIR anyway
 - Applications and perceptions
- What researchers have done about it
- What researchers may want to do about it
 - which "efficiency metric" ?
 - which "functionality model" ?
 - which "interaction model" ?
 - which "privacy model" ?
- Status and future

What Private Information Retrieval (PIR) is

(Data Search) Query

(Data Download) Answer

- Database: string x of bits x[1],...,x[n]
- Alice's input: private input i in {1,...,n}
- Three main requirements: correctness, privacy, non-triviality
 - Correctness: Alice gets x[i]
 - Privacy: Database administrator does not obtain any partial information about index i
 - Non-triviality: communication complexity < n</p>

How important is PIR anyway

- Applications:
 - "Direct" Applications of PIR
 - Search by keywords
 - Searching documents in file systems, records in databases
 - Private information sharing
 - Known result: given a PIR protocol, one can construct an Oblivious Transfer (OT) protocol
 - OT is also called Symmetric PIR (SPIR)
 - "Direct" Applications of OT
 - Privacy in Auctions, Stock Market operations,...
 - Other applications of OT
 - 2-party and multi-party private function evaluation protocols
- Perceptions:
 - PIR may be of large interest to some
 - clients, users, government (?),...
 - PIR may be annoying to many others
 - servers, businesses that commoditize information,...

What researchers have done about it

(Data Search) Query

(Data Download) Answer

Alice

- Basic protocol idea:
 - Alice's query is a "homomorphic encryption" c of her private index i;
 - Database's answer is a manipulation c' of c, using x[1],...,x[n];
 - At the end, Alice recovers i after decrypting c'
- Most studied questions:
 - Decreasing communication complexity
 - Decreasing server's computational complexity
 - Applications to / relationships with cryptographic primitives
 - Problem variants
 - Multi-database model

Prepared by Giovanni Di Crescenzo

What researchers may want to do about it

- Asking and answering the "right questions"
- Here are some of them:
 - What is the most appropriate "efficiency metric"?
 - What is the most practical "functionality model"?
 - What is the most practical "interaction model"?
 - What is the most practical "privacy model"?
 - Any other "requirements" for PIR ?

My very debatable opinions follow...

Which efficiency metric?

- Current metrics:
 - Communication complexity
 - Sublinear, then Polylogarythmic in the database length
 - (Server's) Computational complexity
 - Smaller than database length
 - perceived as major bottleneck towards practical PIR
- Current approaches:
 - Minimal amount of computation per database bit
 - Efficient retrieval of blocks
- Suggestion:
 - Scenario-dependent, non-asymptotic, amortized over multiple queries, combination of both metrics
- Real target:
 - Low-communication
 - In a non-asymptotic sense, as a function of all parameters
 - Computational efficiency of Hybrid-Encryption
 - Symmetric Encryption after Asymmetric Encryption of a short key

Which functionality model ? (1)

- Current PIR functionality definition:
 - retrieval of a bit from a string of n bits
 - elegant but huge over-simplification
- Other studied functionalities:
 - Efficient retrieval of a block of contiguous bits
 - Keyword search

Which functionality model ? (2)

• Actual information retrieval:

- Suggestion: Studying which other practical functionalities are efficiently achievable using PIR
 - Ultimately dictated by real-life applications

Prepared by Giovanni Di Crescenzo

Which interaction model?

- Current PIR interaction definitions:
 - One client retrieving data from one server
 - One client retrieving data from multiple servers that do not communicate (!)
- Suggestions for more practical interaction models:
 - Single-server PIR using help from other trusted servers (E.g., commodity-based PIR)
 - Off-line data preprocessing from a single server
 - Single-database retrievals from multiple users

Which privacy model?

- Current PIR interaction definition:
 - Server cannot guess any partial information about client's index
- Suggestion from a theoretical point of view:
 - Universally-composable PIR
- Suggestions from a practical point of view:
 - Partial privacy is enough for most applications
 - "Repudiative" PIR
 - K-Anonymity
 - Application-dependent privacy definition

Any other requirements for PIR?

- Current PIR requirements:
 - Correctness, privacy, non-triviality
- Suggestions:
 - How about "simplicity of implementation"?

Status and future

- PIR software libraries are publicly available
- But (imho) PIR still seems very far from an applicable cryptographic primitive
 - Even in small-database scenarios!
- Do we understand the challenges ?
 - Mostly YES
- Can we solve them ?
 - Some seem really hard... 😕
 - On the other hand we have plenty of open problems!