
PIR: crypto design
perspective

Aggelos Kiayias
University of Connecticut

http://www.cse.uconn.edu/~akiayias
aggelos@cse.uconn.edu

Efficiency & Algorithms

the algorithm
runs in .
time, thus is efficient.

c · (n2 + 3n log n)

the algorithm is polynomial-
time, thus is efficient

the algorithm
takes 4msec in my
Powerbook, thus is

efficient.

Three levels of consideration
• Polynomial-time vs. Non-polynomial-time : The

inherent complexity of problem. The absolute
boundary of efficient computation.

• Exact time/space/communication-complexity
function: good data structures / clever all
around design/ art of computer programming.

• Benchmarks : the bottom-line/ hardware -
software coupling / compiler optimization.

Life and Times of a Problem
• Definition / Motivation.

• First solution/ Feasibility/ Polynomial-time.

• More solutions... Diversity. Alternate
settings. Exact complexity functions.

• First implementations.

• Fine tunings. More implementations.
Benchmarks.

A Crypto Design Exclusive

• “Per-bit” vs. “Per-block”

• Per-bit is easier to design and argue the
security of.

• HOWEVER : complexity suffers a
multiplicative factor.

Party A performs a number of crypto operations “per X” of its input.

Observe

Θ(n + f(k))Θ(n · f(k))

input length

crypto - op complexity f(k)

n

security parameter k

“Per-bit” vs. “Per-block”

Retrospective

• First provably secure public-key cryptosystem:
[GM82] : per-bit primitive.

• First provably secure digital signature:
[GMR88] : per-bit primitive.

• First zero-knowledge proof:
[GMR85] : per-bit primitive.

Development
• None of the previous schemes is in use.

• Still, they were seminal works that pointed
to the right direction.

• Now, 20 years later we have: finely tuned
benchmarked and secure per-block
cryptographic primitives implemented in
every computer.

What about PIR?

• First (single-server) PIR:
[KO97] : a per-bit primitive.

• First (single-server) poly-log PIR:
[CMS99] : a per-bit primitive.

• A Per-bit to Per-block transformation is
possible for both the above protocols.

Communication Rate
• More suitable for judging communication

complexity of block PIR protocols.

• What is the communication rate for each bit
that is PIR transfered?

• Observe : all “per-bit” protocols transformed
to “per-block” have vanishing rates in the size of
the database.

We need constant rate protocols -
---- native “Per block” constructions

Be harsh on PIR protocols!

• PIR has a characteristic that many previous
cryptographic primitives do not have:

• PK-encryption, digital signatures, zk-proofs
etc. are essentially solving the impossible thus
even per-bit primitives can be useful!

• PIR can be solved by transferring the
database. duh!

Achieving Constant Rate

• Gentry-Ramzan PIR (ICALP 2005):

• Transmission Rate : ~1/4

• Lipmaa PIR (ISC 2005) original rate : ~1/logn

• New optimized version rate ~1

Where is the catch?

• Transmission rate still an asymptotic
parameter. What about the constants?

• What about time complexity?

• What about benchmarks on real inputs?

Towards PIR Implementations
• Optimized version of Lipmaa’s PIR has superb

communication complexity :
e.g., for 1MB PIR transfer the communication can be
merely 1.56 MB!

• Time-complexity for server can be very taxing:

• [GR05] one modular exponentiation with huge
exponent. (proportional to the database)

• [Lip05] many modular exponentiations with regular size
exponents but over huge groups!
(e.g., 20000 bit)

Let’s Crunch
Use optimized [GR05] PIR for
blocks and estimate
implementation costs for a
hypothetical database.

Caveat : the following numbers are rough
estimates that are NOT based on an
implementation. They are subject to change
once an implementation is at hand.

Results
• Database consists of 2048 entries of documents each 64Kbytes

long.

• Required communication for a PIR read : ~ 256Kbytes.

• Client computation-time : ~ 95 seconds.
extrapolation from Powerbook G4 1.3 GHz openssl benchmarks.

• Server computation-time ~ 45 seconds.
extrapolation from Sun fire T2000 1.2 GHz 8core openssl benchmarks.

• Sending the whole database (128MB) at 350 KB/sec
bandwidth : 374 seconds.

the above assume 1024-bit moduli

Details

• [GR05] has a heavy toll on the client.
Understanding the underlying intractability assumption may
lead to substantial improvements (or substantial
degradation if the assumption crumbles).

• Optimized version of [Lip05] has better
com. complexity and superior client side
computation.
Server side computation blows up though.

Directions
• Improve on [GR05][Lip05].

• Focus on related primitives: Reduction of Block-PIR
to Secure Multivariate Polynomial evaluation
from [Kiayias-Yung ICALP ‘02].

• Design PIRs based on alternative assumptions: avoid
modular exponentiations and other expensive
operations.

Conclusion
• Practical PIR?

• not there yet but we are maybe just seeing
the first glimpses of it.

• My prediction based on history and the recent
works just described: upcoming cryptography
research focusing on the right direction will
beat the problem soon.

• Support crypto research.

